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Abstract / Résumé

‘What are you doing here? Five words, or less.’

Buffy Summers, Buffy the vampire slayer (1997)

Abstract

Human activities are affecting ocean health dramatically. Climate change caused by anthro-

pogenic greenhouse gas emission results in sea-surface warming, polar ice caps melting,

ocean acidification, and changes in circulation and mixing regimes leading to stratification.

All life forms in the ocean are impacted, primarily microorganisms which dominate ocean

biodiversity and play a major role in global ecosystem function. Microbial communities have

a capacity for rapid adaptation because of their large population sizes and short generation

times, potentially altering the global cycles of carbon and nutrients in response to climate

change, but these feedbacks are largely unresolved.

In this thesis, we focus on heterotrophic bacteria and their ability to remineralize dis-

solved organic matter into inorganic nutrients. This ‘microbial loop’ fuels a carbon recy-

cling pathway, but its response to climate change is still poorly understood. Through eco-

evolutionary modeling, we resolve the potential feedback loop resulting from bacterial adap-

tation in different oceanic regions, both at the surface and deep in the water column. We find

that bacterial adaptation tends to mitigate the negative effect climate change has on dis-

solved organic matter regeneration, with varying degrees depending on the biogeographical

region. In order to generate predictions of our model at the global scale, we develop a novel

framework for integrating eco-evolutionary processes with Earth system models. We find

that bacterial adaptation in the microbial loop adds uncertainty to global ocean ecosystem

forecasts, and call for further eco-evolutionary studies at this scale. Finally, we extend our

eco-evolutionary modeling framework to address the effect of bacteriophages – arguably a

major demographic factor of bacterial populations. We present preliminary analyses of bac-

teriophages’ influence on the carbon cycle and how they may alter the speed and dynamics

of bacterial adaptation to changing environments.
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Abstract / Résumé

Overall, this thesis emphasizes two current ‘blind spots’ of Earth system models: an ex-

plicit representation of the microbial loop and the integration of eco-evolutionary processes

that are mediated by ocean microorganisms.

Résumé

Les activités humaines ont un impact considérable sur la santé des océans. Le changement

climatique causé par les émissions anthropiques de gaz à effet de serre entraîne un réchauf-

fement de la surface de la mer, la fonte des calottes polaires, l’acidification des océans et

des changements dans les régimes de circulation et de mélange conduisant à une stratifi-

cation de la colonne d’eau. Toutes les formes de vie dans l’océan sont touchées, principale-

ment les micro-organismes qui dominent la biodiversité des océans et jouent un rôle majeur

dans la fonction des écosystèmes marins. Les communautés microbiennes ont une capacité

d’adaptation rapide en raison de la taille importante de leurs populations et de la brièveté

de leur temps de génération, ce qui peut potentiellement modifier les cycles globaux du car-

bone et des nutriments en réponse au changement climatique, mais ces rétroactions sont

encore peu comprises.

Dans cette thèse, nous nous concentrons sur les bactéries hétérotrophes et leur capac-

ité à reminéraliser la matière organique dissoute en nutriments inorganiques. Cette "boucle

microbienne" alimente une voie de recyclage du carbone, mais sa réponse au changement

climatique est encore mal déterminée. Grâce à une modélisation éco-évolutive, nous quan-

tifions la boucle de rétroaction potentielle résultant de l’adaptation bactérienne dans dif-

férentes régions océaniques, tant à la surface qu’en profondeur dans la colonne d’eau. Nous

constatons que l’adaptation bactérienne tend à atténuer l’effet négatif du changement cli-

matique sur la régénération de la matière organique dissoute, avec des degrés variables selon

la région biogéographique. Afin de tester les prédictions de notre modèle dans un contexte

global, nous développons un nouveau cadre pour intégrer les processus éco-évolutifs aux

modèles de circulation océanique. Nous constatons que l’adaptation bactérienne dans la

boucle microbienne peut ajouter de l’incertitude à nos prévisions, et appelons à de nou-

velles études éco-évolutives à cette échelle. Enfin, nous incluons les bactériophages dans

notre modèle et étudions à la fois leur influence biogéochimique sur le cycle du carbone

et la façon dont ils pourraient influencer la vitesse d’adaptation des bactéries aux environ-

nements changeants.

Dans son ensemble, cette thèse met l’accent sur deux "angles morts" actuels des modèles

du système terrestre : une représentation explicite de la boucle microbienne et l’intégration

des processus éco-évolutifs dans l’analyse de sa dynamique en réponse aux changements

globaux.
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Abstract / Résumé

Keywords Microbial loop, Eco-evolutionary processes, Natural selection, Adaptive dynamics, Oceans,

Climate change.

Mots clés Boucle microbienne, Processus éco-évolutifs, Sélection naturelle, Dynamique adaptative,

Océans, Changement climatique.
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Chapter 1

The ocean, climate change and microbes

‘Is it not a strange fate that we should suffer so much

fear and doubt for so small a thing? So small a thing!’

Boromir, The Fellowship of the Ring (1954)

‘The Blue Planet’, such is the name often given by people to Earth. From outer space,

our planet does indeed look blue because of the vastness of the oceans, spanning across a

majority of Earth’s surface. The importance of the global ocean goes beyond its size: thought

to be the cradle of life, it still holds an important connection to humanity to this day. One

third of the population lives within 100 km from the ocean, and much of the health and well-

being of communities around the world rely on the state of the ocean. Human activities

pose a serious threat to ocean health and its ecosystems, which could directly impact all

ecosystem services provided by the ocean.

In this introductory chapter, we give a broad description of the context and detail the

oceans’ role in global climate regulation. More specifically, we delve into the realm of ma-

rine ecosystems, which are at the foundation of a crucial biological carbon pump. We then

describe the potential consequences of climate change on the ocean, particularly on the

adaptation of microorganisms to environmental shifts, and underline the potential eco-

evolutionary feedbacks resulting thereof. Finally, we present current modeling efforts to

predict the scope of climate change, with the potential shortcoming induced by not taking

eco-evolutionary processes into account.
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Chapter 1. The ocean, climate change and microbes

1.1 Ocean ecosystems and the flow of carbon

1.1.1 The global ocean, a major carbon trap

The ocean plays a major role in regulating the global climate. In school, we learn that the

water cycle originates in the ocean [259]: water from the surface evaporates, creating the

clouds from which the rain falls, potentially hundreds if not thousands of kilometers away.

But the ocean’s role in climate goes beyond that: in particular, it is a key actor in the Earth’s

carbon cycle. It acts as a major carbon reservoir, second only to the lithosphere [235], and

holds more than 50 times the amount of carbon present in the atmosphere (Figure 1.1).

Biosphere
2,000 Gt

Lithosphere
37,000,000 Gt

Hydrosphere
39,000 Gt

Atmosphere
750 Gt

FIGURE 1.1: Carbon reservoirs of the Earth

The difference in partial pressures between atmospheric and aqueous CO2 drives the dis-

solution of the former in the ocean [236]. On the timescale of millennia, the global ocean acts

as a control on atmospheric CO2, and is expected to remove up to 90% of all anthropogenic

carbon dioxide from the atmosphere [8]. On shorter timescales, it can also act as a strong

buffer of variations in atmospheric CO2 levels [88], with about a third of yearly man-made

emissions estimated to be captured by the ocean [232, 124].

Ocean mixing can lead to large concentrations of carbon sinking to deeper layers of the

sea [160], effectively trapping it. This pathway for trapping carbon in the ocean relies purely

on physical properties (the ‘solubility pump’ [266] or ‘physical pump’), but other mecha-

nisms can trap carbon for geological times relying on oceanic ecosystems; this is the ‘biolog-

ical pump’ [211].

To understand how efficient the biological pump really is, let us look at the distribution

of a very important nutrient for life in the ocean: nitrate (Figure 1.2). We note a huge dis-

crepancy between the poles and the tropics, with the difference spanning several orders of

magnitude. Compare this to salinity, which lies roughly between 34 and 37 parts per thou-

sand [32]: its value varies approximately by ±10%. What makes one practically constant

across the ocean while the other varies so much? Because of ocean mixing, we could expect

nitrate to be as uniformly distributed as salt, but it is not. Nitrate, unlike salt, is what we call a

‘nutrient’, for it can be used by phytoplankton as a resource for fueling photosynthesis. Some

oceanic regions are poor in nitrate because biological processes strip it from the surface at

2



1.1. Ocean ecosystems and the flow of carbon

0.0001 0.01 1.0 100

Nitrate concentration in mmol/m3

FIGURE 1.2: Nitrate distribution at the surface of the ocean. Source: Copernicus Marine Service Information [136].

a much faster rate than ocean mixing [236], leading to different biogeographical regions. By

stripping the surface ocean from nutrients, oceanic ecosystems can lead to moving carbon

from the surface to the bottom of the water column. But how exactly does this mechanism

work?

Everything starts with CO2 dissolution at the surface of the ocean, generating dissolved

inorganic carbon (DIC). In this dissolved form, carbon can then be used by phytoplankton

to create organic matter through photosynthesis. Phytoplanton are then grazed by zoo-

plankton, and both are consumed by higher trophic level animals such as fishes and whales.

Through death and egestion, all those individuals create particulate organic matter (POM),

which then sinks to the bottom of the ocean (Figure 1.3). Once part of the sediment floor,

carbon is considered locked and won’t return to the atmosphere before up to millenia [211,

126].

Up until the mid 1970’s, this pathway from small to large organisms (the ‘food chain’) was

considered the only of importance for carbon in the ocean. But the food chain gradually be-

came the food web [218], and more focus was given to microorganisms and their importance

in biogeochemical cycles.

1.1.2 Microorganisms and biogeochemical cycles

The scientific community then realized that microorganisms dominate ocean biodiversity:

as Falkowski, Fenchel, and Delong [94] aptly phrase it, the Earth’s biogeochemical cycles

are driven by microbial engines. Microbes may not seem like much at first glance (some

you wouldn’t even see with the naked eye!), but they amount to a lot when it comes to cli-

3



Chapter 1. The ocean, climate change and microbes

CO2

DIC

Phytoplankton Zooplankton Animals

PO
M

Classical food chain

FIGURE 1.3: A representation of the main export patwhay for organic carbon. The classical food chain: phy-
toplankton perform photosynthesis and move up carbon in the food chain to zooplankton and bigger animals
through grazing and predation. Particulate organic matter (POM) is created through death and egestion, and
sinks to the oceanic floor, trapping carbon over several millenia.

mate [134]. In order to comprehend just how influential these organisms can be, we first

need to grasp how ubiquitous they are. For that, let us do the following experiment: we take

a spoonful1 of ocean water and see what we find in it.

First, how likely are we to catch the biggest animal there is on Earth with our spoon?

Optimistic estimates2 and a small calculation gives us just a little under 1 in 1 billion chance

to end up fishing a blue whale that way. Compare that to the tiniest animals in the ocean,

zooplankton: you would have 1 in 200 chance [207] to find one in your small ocean water

sample.

Now let’s turn to even smaller organisms: phytoplankton. Diatoms are amongst the

largest phytoplankton species in the ocean, and you would find about 35 of them in your

spoon [155]. They are a major actor in global biogeochemical cycles, as they perform about

20% of all primary production on Earth [171]. That means that 1 in every 5 breaths we take

is directly attributable to diatoms, and this ratio goes up to 1 in every 2 breaths when taking

into account all species of phytoplankton [99]. The most abundant type of phytoplankton

are cyanobacteria, with about 500,000 cells ending up in your spoon [104]. Like their name

suggests, cyanobacteria are a type of bacteria, meaning that unlike diatoms they are prokary-

otic. Prokaryotes are way older than their nucleated counterparts, and photosynthesis is

11 tea spoon = 5ml.
2Considering a population of 25,000 whales [105] of length 30m and height 4m [81] in the first 500m of the

ocean.
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1.1. Ocean ecosystems and the flow of carbon

likely to have appeared in that group.

Cyanobacteria are not the only prokaryotes of the oceans, and other heterotrophic bac-

teria abound. Our spoonful contains no less than 5,000,000 bacteria in total [33]. Het-

erotrophic bacteria do not perfom photosynthesis, and as such rely on organic matter to

generate energy. By consuming organic matter produced by others, they remineralize other-

wise lost carbon into nutrients: this pathway was dubbed the ‘microbial loop’ [17], and will

be the focus of the next subsection.

Bacteria, numerous as they may be, are dwarfed in number by viruses. Dubbed by some

as the ‘puppet masters of the ocean’ [33], bacteriophages3 outnumber bacteria by a ratio of

10:1. Practically speaking, your spoon contains no less than 50,000,000 of them right now! In

addition to applying a strong ecological and evolutionary pressure on bacterial populations,

bacteriophages exert a control over the nutrient cycle by short-circuiting both the classical

food chain and the microbial loop through the viral shunt [277], which will be the subject of

a following subsection.

The microbial loop

With the seminal work of Azam et al. [17] came the term ’microbial loop’ to represent a dif-

ferent path for carbon in ocean ecosystems. The relationship between organic matter and

heterotrophic bacteria is at the heart of this loop [194]. To understand the role of the mi-

crobial loop, remember that the classical food chain ends with POM sinking to the sediment

floor, effectively trapping it over very long periods of time (Figure 1.3). However, only an es-

timated 1% of this flux reaches the bottom of the ocean [175, 261]: what happens to the 99%

of the particles that don’t make it all the way down?

Sinking particles form a particular type of ecological niche, the ‘marine snow’ [4]. Marine

snow is best described as a macroscopic aggregate of organic and inorganic matter sinking

slowly to the depths of the ocean (as the name would suggest). It provides a hot spot for ma-

rine life, among which attached heterotrophic bacteria, which degrade POM [248]. Through

the activity of hydrolytic exoenzymes [12], these microorganisms break down POM to lighter

components in order to consume them.

If some of the POM is then turned into bacterial biomass or respired, this is not the case

for the majority of the particles. Part of the result of POM degradation stays as particles,

but too small to sink: together they form the dissolved organic matter (DOM) pool [130].

Do not let the name fool you as ’dissolved’ organic matter is not dissolved in the chemical

sense, but in an operational sense: any organic matter that passes a filter of a certain size

(usually 0.7µm) is considered part of the DOM category. This broad definition of DOM makes

it a very diverse group, both organically and chemically [209]. In order to specify its nature,

3The specific name for bacterial viruses.
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FIGURE 1.4: A representation of the microbial loop. Particules sinking are broken down by attached bacteria
into dissolved organic matter (DOM), which is usually described by its chemical availability: labile, semi-labile
and refractory. Labile and semi-labile DOM are consumed by free-floating bacteria which release carbon in its
inorganic form through respiration, thus recycling nutrients.

DOM is categorized with regards to its reactivity to free-floating heterotrophic bacteria: this

type of bacteria feeds on DOM and remineralize it to DIC, thus completing the recycling

of nutrients. Generally, three DOM compartments are defined, from the most reactive to

bacterial decomposition to the least: labile DOM, which has a turnover rate of just a few days,

semi-labile DOM, which can have a turnover rate as high as a few months, and refractory

DOM, which can stay in the ocean for several years.

In summary, the microbial loop represents the pathway that regenerates organic matter

and carbon that should have exited the ecosystem (POM) into inorganic nutrients (Figure

1.4)

The viral shunt

The influence of viruses in the microbial loop and the biological pump has gained a lot of at-

tention in the last twenty years [33]. On top of acting as a selecting pressure on bacteria [229]
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1.2. Climate change and the carbon pump

and potentially directly tinkering with their metabolism [34], viruses affect the flow of carbon

in marine ecosystem by triggering the direct release of DOM through lysis. When infecting a

bacterial cell, bacteriophages have two broad phases they can enter: the lysogenic phase or

the lytic phase [168, 165]. In the lysogenic phase, viruses integrate their DNA to their host,

allowing them to reproduce when the host reproduces. On the contrary, when viruses en-

ter the lytic phase, they induce a ‘viral burst’ of the host cell, which releases more virions in

the environment. During this literal burst of the host cell, all matter not turned into viral

biomass is by definition DOM. This ‘viral shunt’ [277] short-circuits the traditional food web

and redirects carbon directly to the DOM pool.

Recent studies have shown a strong correlation between certain bacterial-phage commu-

nities (Synechococcus and their phages4) and carbon export in oligotrophic waters [126], and

theoretical models show that the presence of viruses can increase primary production [274].

While underlying mechanisms are still to be fully determined, this suggests the importance

of the viral shunt for global carbon cycling in the ocean, and calls for their inclusion in bio-

geochemical models.

A first general view of the biological carbon pump

The biological pump can be summarized by three components: the classical food web lead-

ing to carbon being trapped in the ocean floor for geological timescales, the microbial loop

recycling part of the organic carbon into nutrients and the viral shunt moving carbon directly

to the DOM pool and short-circuiting the entire food web (Figure 1.5).

These three components of the carbon pump work in unison to create a complex flow of

carbon in the ecosystems in which microorganisms play a central role. In order to under-

stand how the carbon cycle works in the ocean, and how it responds to climate change, it is

necessary to focus on microbial communities and their relation to carbon.

1.2 Climate change and the carbon pump

Human activities and the emission of greenhouse gases (GHGs) have affected the climate in

a major way, leading us to a new geological era: the Anthropocene [281]. The effects of these

activities are already being felt today, with an increase in extreme climatic events [222] and

a major biodiversity loss [20]. Climate change is bound to have dramatic effects on ocean

ecosystems and the carbon pump, which is why being able to predict those effects has be-

come an important research focus.

4Short for ‘bacteriophages’.
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FIGURE 1.5: A representation of the biological carbon pump and carbon flow in the ocean. On the right side,
the classical food chain: phytoplankton perform photosynthesis and move up carbon in the food chain to
zooplankton and bigger animals through grazing and predation. Particulate organic matter (POM) is created
through death and egestion, and sinks to the oceanic floor, trapping carbon over several millenia. On the left
side, the microbial loop: through the action of attached bacteria living in marine snow, POM is degraded to
dissolved organic matter (DOM), which is then remineralized into dissolved inorganic carbon (DIC) by free
floating bacteria. In the center, the viral shunt: through lysis, marine viruses short-circuit the regular flow of
carbon and move nutrients directly from unicellular organisms to the DOM pool.
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1.2. Climate change and the carbon pump

1.2.1 Climate change and ocean feedback

Climate and the ocean are deeply intertwined. Changes to the climate brought by human

activities will impact the ocean [28], and those changes will eventually feed back to climate.

The different oceanic responses can either increase the rate of climate change (a ‘positive

feedback loop’) or mitigate it (a ‘negative feedback loop’), and the difference between the

two are bound to shape public policies around the world.

The ocean absorbs about a third of all yearly anthropogenic emissions of carbon [232,

124], which alters its chemical composition. This has lead to strong acidification of the

ocean [83], which could have dire consequences on marine life. For instance, many calci-

fying species will be impacted in their capacity to form shells, from phytoplankton to corals,

leading to reduced primary production and more coral bleeching. The microbial loop will

also be impacted, as nitrification rates decline as oceans acidify [24]. Decreasing nitrification

results in reduced nutrient recycling, leading to lower oceanic productivity. This feedback is

positive, as the effects favor a ‘snowball effect’ of the accumulation of carbon in the ocean.
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FIGURE 1.6: Sea-surface temperature anomalies. Annual sea-surface temperature anomalies are represented
compared to the average temperature of the XXth century. Source: NOAA [89].

Numerous reports have concluded that the Earth is warming due to human activities,

most notably the last IPCC report [177]. This includes the ocean, which has seen a surface

temperature increase of roughly 0.7oC since 1880 [89] (Figure 1.6). This warming alters the

ecological niches of many species as well as their metabolism, which leads to contrasting ef-

fects on ocean productivity, with higher individual growth rates for phytoplankton but more

oligotrophic oceans [234]. Hence the difficulty when it comes to predicting how primary

production will vary in the future [251, 150], even if the global trend seems to be towards a

decline of primary production [177, 108]. While the confidence in these predictions is not

100%, it is likely that warming oceans feed back positively to climate change.
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Chapter 1. The ocean, climate change and microbes

An increase in water temperature also has a direct consequence on physical properties

of the ocean: in addition to sea-level rising [39], the ocean becomes more stratified [164],

which has global climate consequences. Stratification leads to reduced convection from the

deep sea [69], lowering nutrient influxes for surface ecosystems [108] and possibly altering

heat and carbon storage capacity of the ocean [76]. All these effects reinforce the negative

effects of climate change in a positive feedback loop.

Finally, increased stratification and a warmer ocean result in deoxygenation of the water

column [244, 205]. Oxygen minimum zones are expanding, changing ecosystem structure

and reducing potential fisheries catches [28], but they also have important climatic conse-

quences: these regions are indeed linked to high emissions of nitrous oxide (N2O), a potent

GHG [9]. Once again, the feedback loop from oxygen depletion to climate change is positive.

Quantifying and predicting these potential feedbacks to the climate is a central topic for

both scientitist and public authorities [222]. Predicting how the climate will change by the

end of the century is central to policy decisions, and the accuracy of these predictions can

impact everyone’s life. But how exactly do we proceed to make these life-changing predic-

tions?

1.2.2 Earth system models, a relevant tool for predictions

This big question raises an even bigger one: how do we predict anything? From how long the

commute from your home to your workplace might take tomorrow, to the future of climate,

every prediction relies on the same basic tool, a model.

What is a model?

Oftentimes, the word ‘model’ sparks images of miniature trains and ships in bottles before

numbers and equations. While the focus of this thesis will be on mathematical modeling,

the two kinds of models are not unrelated. Indeed, just as a hobbyist modeler takes a com-

plex object, downsizes it and simplifies it until it can fit miniature train tracks or a bottle,

a mathematical modeler takes complex events, downsizes them and simplifies them using

mathematical language and symbolism.

For instance, describing the dynamics of population growth over time can be modeled

by the following differential equation:

dN

dt
= r ×N ×

(
1− N

K

)
. (1.1)

This is the ‘logistic growth model’ [260], and it aims at describing key ecological principles

with just one equation. N represents the population size, r the population growth rate, and
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1.2. Climate change and the carbon pump

K the carrying capacity of the environment (i.e., the largest population that can be sustained

by a given environment). With just three parameters, we are able to describe the dynamics

of a simple ecosystem in a way that matches observations reasonably well.

Before jumping into a specific model, we need to keep in mind what the end goal is.

Models can be used for three general types of purposes:

• Description: The models used to describe are sometimes referred to as phenomeno-

logical, as they aim to reproduce observed phenomena without delving into mecha-

nistic details. Models describing the relationship between bacterial growth rate and

resource concentration such as the Monod equation [186] fall in this category.

• Explanation: Models can also be used to understand the emergence of certain prop-

erties. Contrary to descriptive models, the models used here try to focus on the basic

building blocks of a mechanism so that key properties emerge from simpler interac-

tions. For instance, the Lotka-Volterra cycles [270] emerge from the simple predator-

prey interactions, but are not modeled a priori.

• Prediction: Models can be used to predict the behavior of a system in different set-

tings. By taking a mechanistic model, and placing it in a new setting, we can predict

what would happen in the real world. This is the case for general circulation models

(GCM) and more broadly Earth system models (ESM), which will be a particular focus

of this thesis [172].

Of course, the lines between description, explanation and prediction are not clearly drawn.

Models used for prediction are not inherently different from models used for explanation: a

model used for explanation in a novel setting provides a useful basis for predictions, and the

building blocks of these models are often descriptive. The type of models used to predict

the future of the ocean and climate are complex and intricate, and fall under the category of

Earth system models.

Earth system models

Earth system models (ESM) are general models designed to represent the interactions be-

tween the different ‘systems’ of the planet: physical evolution of climate, biogeochemistry,

and anthropogenic influence [103].

The first building block of ESMs is the modeling of climate itself and the physical laws

governing its evolution. This is done by general circulation models (GCM) [169, 3], which

describe how fluids move and interact through the Navier-Stokes equations [254]. This al-

lows us to predict the movement and physical transformations of both the atmosphere and

the hydrosphere on very large scales. When applied to the oceans, these models predict the
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Chapter 1. The ocean, climate change and microbes

movements of water masses, the dynamics of currents and physical properties at the scale

of the Earth.

GCMs can then be coupled to biogeochemical models to include the influence of biology

on climate [15, 132]. Biogeochemistry is eloquently defined by the Encyclopedia Britannica

as ‘the study of the behaviour of inorganic chemical elements in biological systems of geologic

scope’. For instance, the study of the carbon cycle in ocean ecosystems from the previous

section was a biogeochemical study. By implementing the dynamics of biotic components of

the ocean (usually through differential equations between interacting compartments), ESMs

are able to model the influence of climate on the biological carbon pump and assess the

corresponding feedback.

The last piece of the puzzle necessary to predict the future of climate with ESMs is the

inclusion of anthropogenic influence. This can be done by using Representative Concen-

tration Pathways (RCPs) [252], which represent the trajectory of GHG concentration under

different scenarios. For instance, RCP2.6 is an optimistic scenario in which global action is

taken to insure global temperatures do not increase by more than 2oC by the end of the cen-

tury; conversely, RCP8.5 is sometimes called the ‘business as usual’ scenario, in which no

effort is made to lower GHG emissions. This could lead to an increase of temperature close

to 4oC by the end of the century. To make the predictions, the climate models start from a

climate state close to its contemporary state and run until the end of the century while we

control the GHG concentration according to the chosen RCP.

In order to have the most accurate predictions possible, relying on one model is not

enough. In order to evaluate climate models and compare them, a common framework was

developed: the Coupled Model Intercomparison Project (CMIP). In its latest phase (CMIP

Phase 6), 23 models using a common set of forcings are compared to address the Earth re-

sponse to forcing, the origin and consequence of model biases and the assessment of future

climate change [91].

ESMs integrate more and more complex mechanisms as they are developed in order to

provide accurate assessments and predictions. For instance, the first climate models did

not even include the biogeochemical cycles and only relied on physical components [172].

Notably, the microbial loop was rarely included even recently and bacteria treated implic-

itly [15], but this is starting to change [132, 87].

One component that is lacking from all current ESMs is biological adaptation by natural

selection and the feedback it can provide to climate. Biogeochemical models used in ESMs

are calibrated to represent the current state of the ocean, including ecosystems. They as-

sume that the living communities present in the ocean a hundred year from now will not be

sensibly different from contemporary ones [137]. While this may be the case for large or-

ganisms such as fishes and sea mammals, microorganisms are known to evolve rapidly to

changing environments [111, 282]. As microbes are central to biogeochemical cycles [94],
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1.2. Climate change and the carbon pump

taking into account their adaptive capacities is a central point of interest in order to provide

a more accurate depiction of the potential future of the oceans under climate change [137,

187].

1.2.3 The underestimated importance of adaptation by natural selection

When talking about adaptation by natural selection, it is easy to picture dramatic changes

in a species that gives it a definite advantage over its competitors. Such dramatic changes

come about as rare ‘evolutionary innovations’, such as the apparition of citrate metabolism

in bacteria [29]. In this thesis, we focus on ‘common’ evolution, whereby natural selection

fine-tunes existing functions of a population.

FIGURE 1.7: Darwin’s finches. (1) Geospiza magnirostris; (2) Geospiza fortis; (3) Geospiza parvula; (4)
Certhidea olivacea. Source: Journal and Remarks [64].

Take Darwin’s finches for instance (Figure 1.7). These birds were first collected by Dar-

win in the early 1830’s during the second voyage of the HMS Beagle in the Galàpagos, sur-

veying sea routes and completing nautical charts [64]. Darwin noted the remarkable diver-

sity of beak form, which seemed perfectly adapted for different food sources. This observa-

tion helped him develop his theory of natural selection in his seminal work On the Origin of

species [65].

For natural selection to take place, three conditions need to be met [162, 84]:

1. Phenotypic variation: in a population, individuals are intrinsically different.

2. Differential fitness: the differences in phenotype lead to different probabilities of sur-

vival and reproduction.

3. Heritable variation: phenotypic variation can be passed down between generations.

The strength of this framework is that it can be applied at any scale for which the condi-

tions are met. For instance, we can study the evolution of beak form in the Galàpagos finches

through this lense: to simplify, we focus on how natural selection lead to the coexistence of
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Chapter 1. The ocean, climate change and microbes

finches with large beaks feeding on seeds and nuts (e.g. Geospiza magnirostris) and finches

with small beaks feeding on small insects and worms (e.g. Certhidea olacea).

Let us go back to a time when all finches had similar beaks of intermediate size which

allowed them to feed on both sources, though not as efficiently. One day5, a finch is born with

a slightly larger beak (efficient for seeds and nuts) and another with a slightly smaller beak

(efficient for insects and worms). By being more specialized in a certain type of food, these

two new phenotypes thrive, and the ancestral finch is driven to extinction by the competition

on both nuts and worms. This process can be iterated and repeated over many generations,

eventually leading to the differentiation of beak forms (Figure 1.8).

Ancestral finch

Adapted finches

N
atural selection

FIGURE 1.8: Adaptation of finches’ beaks. From top to bottom, the different generations of fincheswith varying
beak sizes. Extinction events are symbolized by grey boxes, and lineage is expressed by connecting lines.

With this simple example, we saw how the environment could induce the adaptation of a

population. In return, populations act on the environment and modify it, leading to an eco-

evolutionary feedback loop [97]. In the case of Darwin’s finches, we could imagine that the

population feeding on nuts will favor the spread of nut trees by eating and sowing seeds, thus

changing the general landscape of the island. Eventually, this loop may converge towards a

steady-state: in this situation, the population has reached the evolutionary stable strategy

(see Toolbox 1.1).

5Naturally, in the real world these events happen over a long period of time and not simultaneously.
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Toolbox 1.1 The evolutionary stable strategy (ESS)

When natural selection leads to a state where the resident population can no longer

be replaced by fitter populations, we say that the resident has reached an evolutionary

stable strategy (ESS) [249].

In this thesis, we focus on evolutionary stable strategies as ‘outcomes’ of natural

selection to assess its importance on climate change, but we need to keep in mind

that it is not the only possible outcome. For instance, natural selection can lead to

evolutionary branching, a state where selection actually leads to coexistence of multi-

ple phenotypes [73].

Oceanic microorganisms have a strong potential for rapid adaptation trough selection,

a fact that has long been hinted at by laboratory experiments [26], and recently been con-

firmed in vivo: adaptation to increased temperature in the zooplankton Daphnia magna oc-

curred in as little as 2 years, resulting in an increase in thermal tolerance of 3.5°C [113], and

adaptation to increased temperature has been documented in the phytoplankton Chlorella

vulgaris in as little as 100 generations [206]. These examples illustrate the potential for evo-

lution at speed comparable to plastic and ecological responses to climate change.

The adaptation of functional traits involved in the carbon cycle (‘C cycling traits’ [187])

has the potential to feed back to climate change in ways that could upset current predic-

tions of future atmospheric CO2 predictions [137]. Relevant traits include C fixation rates

in phytoplankton [140], nitrogen fixation and growth rates in cyanobacteria [135, 268]. A

decade-long mesocosm experiment found that, under increased temperatures, populations

of the algae Chlamydomonas reinhardtii evolved 3.5-fold greater net photosynthesis com-

pared with populations evolved under ambient temperatures [240]. Likewise, under experi-

mentally increased CO2 and acidification, Gephyrocapsa oceanica evolved higher photosyn-

thetic C fixation and growth rates [140]. These experiments suggest that autotrophic adap-

tive trait evolution driven by climate change can increase photosynthesis relative to respi-

ration – a potentially negative feedback to atmospheric CO2. Altogether, such studies sug-

gest that selection caused by increased temperature or acidification acts in directions that

increase the net flux of C from the atmosphere to biotic and abiotic storage pools and pro-

duce a negative feedback loop to atmospheric CO2. Generalization, however, is premature.

Under experimentally increased CO2 and acidification, Phaeodactylum tricornutum evolved

reduced photosynthesis, respiration, and growth rates [163]. Moreover, adaptive evolution

can occur in the opposite direction of plastic responses. For example, under ocean acid-

ification, phytoplankton often decrease rates of photosynthesis plastically, in the opposite

direction to evolutionary increase in photosynthetic rates [59].

In addition to phytoplankton adaptation, the feedback induced by heterotrophic bacte-

ria has the potential to alter global biogeochemical cycles. Bacterial biomass may not be

a major carbon reservoir, but the carbon fluxes going through heterotrophic bacteria are
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amongst the most important [189]: bacterial respiration in particular represents most of the

respiration occuring in the oceans [228] and could determine whether the global ocean is a

source or a sink of carbon [71]. Heterotrophic bacterial C cycling traits include bacterial car-

bon demand [263], enzyme temperature sensitivity [6] or bacterial growth efficiency [233].

Heterotrophic bacterial adaptation in terrestrial environment is likely to aggravate carbon

loss to the atmosphere [2], establishing a positive feedback to atmospheric CO2, but similar

restults in the ocean have yet to be established.

Such complexities speak to the need for greater understanding of eco-evolutionary feed-

backs emerging from the individual and population responses of functional traits across

whole ecosystems.

1.3 Thesis overview

The general aim of this thesis is to assess the impact of microorganism adaptation on bio-

geochemical cycles and the potential feedback to climate change. A particular point of inter-

est was the influence of viruses on climate change, both on biogeochemical cycles (through

the viral shunt) and on bacterial adaptation (through transduction). In both their action

through the viral shunt and transduction, viruses affect heterotrophic bacteria and the mi-

crobial loop. In order to understand phage role in global biogeochemical cycles, a detailed

study of heterotrophic bacteria and their adaptation in the microbial loop was needed. In-

deed, whereas a body of theory exists for phytoplankton adaptation [241] in response to the

rise of sea surface temperature, microbial loop function and its response to climate change

are still poorly understood. Working at the scale of the global ocean is necessary to properly

assess the impact of microbial adaptation on global biogeochemical cycles. In this thesis,

we propose a novel framework to integrate adaptation by natural selection in the current

generation of ESMs and apply it to the study of heterotrophic bacteria adaptation.

In Chapter 2, we explain the philosophy behind our modeling of the microbial loop in

absence of viruses. We use an ecological compartments describing bacterial biomass and

DOM concentration, coupled with a trait-based model of bacterial metabolism. The result-

ing microbial loop model is designed to be easily coupled with larger classes of models, from

toy-models of the water column to complex Earth system models. General results are derived

regarding the bacterial evolutionary stable strategy, and the model is applied to the study of

DOM remineralization deep in the water column under ocean warming and stratification.

We apply our framework to an extensive study of a sea-surface ecosystem in Chapter 3.

We aim to understand the response of both new and regenerated production to increased

temperatures, and how bacterial adaptation shifts microbial loop function. We divide bio-

geographical regions according to their richness in nutrients and to their initial temperatures

and quantify the relative strengths of the ecophysiological response and the effect of bacte-
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rial adaptation.

In order to test the predictions of our theoretical model, we develop a novel framework

for integrating eco-evolutionary processes in ESMs in Chapter 4. Future climate forecasts

fail to take microbial adaptation into account, which may have important consequences on

biogeochemical cycle. To make the computation biologically reliable and computationally

cheap, we implement bacterial adaptation as the dynamical optimization of a community

trait through a phenomenological description of adaptation: the selection gradient. We ap-

ply it to the study of the microbial loop adaptation in the NEMO-PISCES ESM to assess the

uncertainty brought by taking bacterial adaptation into account.

In Chapter 5, we introduce a viral compartment to the microbial loop model. Through

increased bacterial mortality and the viral shunt, bacteriophages influence microbial loop

function and thus biogeochemical cycles. We resolve the effect they have on bacterial adap-

tation and the remineralization power of the microbial loop in a constant environment, and

compute the ecosystem response to ocean stratification. We discuss the potential for bac-

terial adaptation to drive bacteriophages to extinction and the potential consequences for

biogeochemical cycles in the ocean.

Chapter 6 focuses on the influence of transduction on bacterial adaptation. Transduc-

tion - horizontal gene transfer by viruses - is an important macroevolutionary force in prokary-

otes, contributing to functional innovation and lineage diversification. In contrast, the role

that transduction play in bacterial microevolutionary adaptation is poorly known. By fa-

cilitating the transfer of beneficial alleles between host cells, transduction may accelerate

adaptation. But transduction also carries the risk of transferring deleterious alleles, which,

in addition to the ecological cost of viral infection, may hinder adaptation. Here we resolve

the conflicting effects of transduction on bacterial adaptation in a simple eco-evolutionary

model for large populations characterized by a quantitative (resource-use) trait with a single

evolutionary optimum.
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Chapter 2

Modeling the microbial loop

‘- Once more let’s go over the entire plan and lay-

out. I apologize for the crudity of this model but I

just...

‘- Yeah Doc’ I know, it’s not to scale.’

Dr. Emmett Brown & Marty McFly, Back to the future III (1990)

Modeling aims at striking a balance between having detailed enough models to represent

reality, yet simple enough to study and understand their underlying mechanisms. The most

important question to ask ourselves when modeling is ‘why?’ Why do we want to model the

microbial loop? In the context of this thesis, modeling the microbial loop will allow us to

understand and predict the response of nutrient recycling to climate change and the impact

it might have on the ocean carbon cycle. The goal is thus to design a model of the microbial

loop that could easily fit a larger class of models, from theoretical sea-surface ecosystems to

ESMs.

In this chapter, we first explain the aim of the microbial loop module and lay out the

eco-evolutionary analysis scheme of the thesis. We then design the ecological module repre-

senting the microbial loop in an abstract setting, where inputs and outputs can be tuned to

represent different ecosystems of varying complexity. We then describe the eco-evolutionary

framework used for this thesis, focusing on the traits and trade-offs. Finally, we focus on

a simple application of the module by applying our module to the study of the microbial

loop in the aphotic zone of the ocean. In this part of the water column that isn’t reached by

sunlight, the system has the advantage of being mainly comprised of bacteria and sinking

organic matter, which provides an interesting case-study for our model.
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2.1 Design philosophy

In this section, we explain the goal of the model as well as the design philosophy and mod-

eling choices leading to it. We try asking ourselves the simple question ‘why?’ at every step

of the way, and see how it can lead to a number of choices that should be discussed and

analyzed.

2.1.1 General considerations and aim

The model determined in this chapter will be used throughout the thesis (with the exception

of Chapter 6), so the choice was made to develop a ‘module’ that could easily fit different

classes of models depending on the study. We talk about a ‘module’ and not a model, because

we intentionally leave parts of the larger model undetermined (Figure 2.1). Our microbial

loop module has a set of inputs and outputs that can be ‘connected’ to a larger model M

depending on the study. This approach allows us to perform base analysis of the microbial

loop in the most general cases, and apply the results to the different models implementing

the module.

Microbial 
loop module

Inputs

Outputs

Model

FIGURE 2.1: General representation of the modeling framework. The microbial loop module described in this
chapter can be ‘connected’ to a larger model depending on the research question.

Assessing the effect of bacterial adaptation on an ecosystem

The first goal of the theoretical models built and analyzed in this thesis is to compute and as-

sess the effects of bacterial adaptation on an ecosystem under climate change. To do so, we

need a general analysis framework, which we describe here. Environmental change is sup-

posed to be gradual, and on a timescale orders of magnitude longer than eco-evolutionary

processes. This allows us to consider bacterial populations at eco-evolutionary equilibrium

at all time, which enables us to isolate the effect of adaptation on the system.

Let us consider an environmental variable e that represents the state of the environment

in one point in time. Metabolic functions such as bacterial growth rate or waste production

can depend on the variable e, allowing us to quantify the effect of environmental changes
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2.1. Design philosophy

on the ecosystem. What e represents depends on the research question we aim to answer:

it could simply be the temperature of the system or something more complicated such as a

multi-dimensional variable representing ocean acidity, atmospheric carbon concentration

and temperature all together.

To isolate the effect of bacterial adaptation of a trait x, we use and extend the analysis

scheme developed in Abs and Ferrière [1]. We compare ecological and evolutionary steady

states under three distinct scenarios:

1. Initial adaptation. Initially, the system is locally adapted to a given environment e0.

The corresponding bacterial evolutionary stable strategy is denoted by x0.

2. Ecophysiological scenario. Here, the environment has shifted from its initial value e0

to its final value e1. Environment-dependant parameters of the ecosystem respond to

this environmental change, but we control the model to prevent bacterial adaptation:

trait value remains at x = x0.

3. Eco-evolutionary scenario. As the environment gradually shifts from e0 to e1, the

adaptive capacity of heterotrophic bacteria is included, and the trait evolves from x0

in an environment e0 to the new evolutionary stable value x1 at e1.

By comparing the ecophysiological scenario to the initial adaptation, we can compute

the broad ecophysiological response of the system in absence of bacterial adaptation. Sim-

ilarly, comparing the eco-evolutionary scenario to the initial adaptation gives us the eco-

evolutionary response of the system. Then, the difference between the ecophysiological and

eco-evolutionary responses provides us with a measure of the effect of bacterial adaptation

on ecosystem function (Figure 2.2). An example of this analysis scheme will be given later in

this chapter, and the studies of Chapters 3 and 5 rely on this method.

The nature of environmental changes considered in this thesis depends on the ecosys-

tem. The water column, in which all our studies take place, can be divided into two broad

categories: the surface ocean and the deep ocean. The limit between the two can be defined

from physical properties, with the surface layer being the ‘mixed layer’ in which biogeo-

chemical properties are considered homogenized by active turbulence [62] whereas deeper

layers are more stratified; or through light penetration, with the surface layer being the ‘eu-

photic zone’ where light is sufficient for phytoplankton to perform photosynthesis, and the

deeper layer being the ‘aphotic zone’, where no photosynthesis can be achieved [157]. We do

not make the distinction between ‘mixed layer’ and ‘euphotic zone’ in this thesis, as for the

level of detail we’re focusing on both definitions can be considered roughly equal [212].

The warming of the atmosphere directly induces sea-surface warming [89], which in turn

impacts the ecosystems of the mixed layer. The metabolic response of bacterial communi-

ties to a temperature increase has been thoroughly studied and modeled [263, 167, 197], but
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FIGURE 2.2: Untangling eco-evolutionary effects of environmental change on the ecosystem. Ecosystem
variations in absence of bacterial adaptation are represented in green, ecosystem variations in presence of
bacterial adaptation are represented in red, and the isolated effect of bacterial adaptation is represented in
blue.
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the ecosystem-wide response is still to be determined. For models focusing on sea-surface

ecosystems, the variable e chosen to represent environmental change shall thus be temper-

ature.

Because of the physical barrier between the mixed layer and deeper in the water column,

sea-surface warming would not immediately increase deep water temperatures, but actually

increase the physical and biogeochemical differences between the layers, resulting in a more

stratified ocean [164]. This stratification would result in a decrease in particles sinking [204],

which translates as a decrease in nutrient input in deep-water ecosystems. For models fo-

cusing on deep-water ecosystems, the variable e chosen to represent environmental change

shall thus be the external nutrient input.

Choosing the right type of model

Translating biological realities to mathematical concepts can be done in a number of ways,

and a wide variety of model types can be considered for our module, both for the ecologi-

cal side and the evolutionary side. Individual-based models [22] have the advantage of al-

lowing ecosystem-wide functions to emerge from individual interactions, but on the other

hand global compartment models [55] are simpler to simulate and study. Modeling bacterial

metabolism can be done through precise thermodynamic considerations [256, 237], more

general considerations of energy budgets [156] or even relying on environmental conditions

alone through resource concentrations considerations [186].

Keeping in mind that the end goal of our module is ESM integration, we need to look at

how these types of models represent ecosystems. The ocean biogeochemistry model NEMO-

PISCES [15] chosen for this thesis (see Chapter 4) works with a compartment model, and

this seems to be a common choice for large scale studies [132, 86]. Our module should fit

this larger class of models, so we choose to model all populations and resources as com-

partments. Here, each compartment is represented by its concentration (for resources) or its

total biomass (for populations), and temporal dynamics are determined by differential equa-

tions. Similarly, all metabolic functions rely on external concentration of nutrients rather

than internal energy budgets.

Eco-evolutionary processes can be integrated through a direct quantitative genetic ap-

proach [241, 58], by focusing on taxons and phylogeny [190] or by focusing on phenotype and

individual functions through traits [141]. In a trait-based model, different metabolic func-

tions of the individuals are represented by numerical values called traits, which define the

phenotype of the individual. Theoretically, one could differentiate between different species

solely through trait values [122, 280], but we choose to have a mix of the two philosophies

and introduced trait variation within the bacterial population. This is a classical approach to

integrating adaptation in ecological models [1, 120, 127], and is useful for studying evolution

as the ‘optimization’ of a given function rather than the apparition of novel features.

23
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2.1.2 An ecological representation of the microbial loop

What compartments do we model?

If we look back at the first general look at the microbial loop (Figure 1.4 from Chapter 1), we

can see that we can divide the microbial loop according to two distinct biomes:

1. Marine snow ecosystem: In this environment, heterotrophic bacteria are attached to

particulate organic matter (POM) forming biofilms [67]. Their enzymatic activity hy-

drolyzes POM into dissolved organic matter (DOM) [130, 85], which then stops sinking.

2. Free-floating ecosystem: In this environment, free-floating bacteria interact with DOM

as separated individuals [14]. In order to consume DOM, they first need to hydrolyze

it through the action of exoenzymes [12, 11].

In global circulation models, only free-floating individuals are represented, and the ma-

rine snow environments in which bacteria are attached to sinking particles are treated im-

plicitly through a density-dependant flux from POM to DOM [25, 132, 15]. For this reason,

our model should focus on free-floating ecosystems, and as such treat first and foremost the

relationship between heterotrophic bacteria and DOM, leaving POM out of the system.

An important actor in this relationship is the exoenzyme pool produced by bacteria. Sim-

ilar studies in soil environments include an exoenzyme pool as a relevant compartment [5,

114, 1], but the current generation of microbial loop models in the ocean omit them [25, 87].

We can ask ourselves the following questions: why such a discrepancy between terrestrial

and marine environments, and should we include an exoenzyme pool to our microbial loop

module?

Marine bacteria can produce two types of exoenzymes [10]: they either release them in

the ocean to become free-floating, or they can keep them attached to their cellular walls. The

distinction is important here, as the inclusion of a separate exoenzyme pool in our model

would be warranted only if the bacteria we study release them in the environment as ‘com-

mon goods’. If the exoenzymes are attached to the bacteria, a single bacterial pool would

better represent the combined bacteria-enzyme ensemble. Studying exoenzyme production

in situ is a difficult endeavour, especially in pelagic environments [10, 13], but theories have

been developed arguing that this production depends on the environment’s richness [53,

192, 14]:

• In marine snow ecosystems, the environment is very riche in nutrients, and individ-

ual bacteria have a very low risk of not gathering resource even if they release their

enzymes. As such, we expect free-floating exoenzymes to be found in this environ-

ment.
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• In free-floating ecosystems, releasing ones enzymes runs the risk of not having a re-

turn on the ‘investment’, and cheaters could benefit from the common goods of exoen-

zyme pools without contributing. Even if it is costlier to keep the exoenzymes attached,

it gives an advantage on resource acquisition.

The difference with soil ecosystems comes from the fact that ocean environments are

much more diluted [53]. Where releasing exoenzymes in the soil assures proximity and thus

easier access to nutrients, it is much more difficult to say so in the ocean, where diffusion

and currents could take enzymes very far from their production location. modeling studies

have led further credibility to this theory [258], and we will work under the assumption that

exoenzymes are attached to bacterial walls: a specific enzyme pool will not be included in

our model.

How many DOM compartments?

In the previous chapter, we have seen that DOM can be categorized in multiple classes de-

pending on their expected turnover rates. The number of classes is generally three, namely

labile, semi-labile and refractory, but sometimes a fourth class can be added dubbed semi-

refractory [130].

This begs the question of whether we should include all three or four classes in our

model. In order to answer it, we need to remind ourselves of what exactly the aim of this

model is: we are trying to represent a general model of the microbial loop that could then

be fitted to different scenarios of varying complexity. Modeling only one compartment has

multiple advantages:

• Having only one resource for our adapting population of bacteria allows us to con-

sider one of the most general classes of trade-offs between yield and resource acquisi-

tion [170]. Focusing on specific mechanisms that transform semi-labile DOM to labile

DOM for instance would open the door to that many more potential trade-offs, blur-

ring the central goal which is to focus on biogoechemical cycles on the large scale.

• In theoretical toy models such as the NPZ model [106, 95, 236] (see Chapter 3), com-

partments are very general, with all populations of phytoplankton being grouped in

one class for instance. In this case, having a detailed pool of DOM would introduce a

level of details not found in other compartments, which is not warranted.

• In ESMs including the microbial loop [132, 87], bacteria usually only feed on the la-

bile class of DOM, even though the flux of semi-labile DOM to labile DOM can depend

on bacterial biomass [25]. The input of DOM in our model can depend on bacterial

biomass if we choose to, which means that we could fit our model with one compart-

ment to ESMs by adapting the input.

25
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Because of all these reasons, we choose to model DOM as one general pool, with the

possibility to add more DOM pools in the larger model M .

A simple representation of the microbial loop

DOM

B

Input

Uptake

RespirationWaste

FIGURE 2.3: General representation of the microbial loop module. B: bacterial biomass; DOM, dissolved
organic matter concentration.

All of these modeling choices left us with a simple representation of the microbial loop

comprised of a bacterial pool and a DOM pool (Figure 2.3), which can then be adapted to

a multitude of scenarios. This module has one input of DOM and two outputs, bacterial

respiration and waste production. Cell death, egestion, nutrient overflow are all globally

categorized as ’waste production’ in this module, but all those cases can be parametrized as

needed in a more complex model without modifying this module (Figure 2.4).
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FIGURE 2.4: Exemples of simple adaptations of the microbial loop module to complex cases. (a) Ecosystem
in the aphotic zone of the water column; (b) Ecosystemwith two classes of DOM, labile (DOM) and semi-labile
(DOMsl ), as well as ammonium (NH+

4 ) and phytoplankton (P).

2.1.3 The evolutionary framework

Designing a robust eco-evolutionary framework in a trait-based model requires the defini-

tion of two important aspects: the trait and the trade-offs. Defining the bacterial function or

characteristic most relevant for our biogeochemical study will give us the trait, and under-

standing how variations in this trait influence bacterial life-history determines the trade-offs
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we consider. This is the most crucial yet complex step in integrating eco-evolutionary pro-

cesses in an ecological model.

Microbial communities are likely to play a central role in shaping the Earth’s response

to climate change [38]. A wide variety of traits are relevant for studying their impact on the

carbon cycle (C-cycling traits [187]), from phytoplankton cell size [238] to global nutrient

stoichiometry [245]. Regarding heterotrophic bacteria, a very general framework for bac-

teria was developed in Malik et al. [170] called the Y-A-S framework. It states that bacteria

have a limited amount of resource to divide between three general strategies: maximizing

yield (‘Y’), maximizing resource acquisition (‘A’) or maximizing stress tolerance (‘S’). This

framework mirrors the plant-based framework of C-S-R strategies defined in Grime [121], in

which plants can adopt three strategies based on competition (‘C’), stress tolerance (‘S’) or

resource gathering (‘R’).

Yield is most commonly referred to as bacterial growth efficiency (BGE) in marine ecol-

ogy [70], and is defined at the ratio between bacterial production and bacterial carbon de-

mand (i.e. the sum of bacterial production and bacterial respiration). Different BGE values

will result in different partitions of organic and inorganic fluxes through the microbial loop,

making it a relevant trait for our biogeochemical study. BGE has been shown to be at least

partially genetically determined [193, 230, 217] and its genetic variations to be under in-

tense selection [233]: BGE adaptation through selection to be a significant factor of variation

between populations exposed to different environments [230, 233]. Such variation could

determine the strength of the recycling pathway and impact the carbon cycle in the oceans.

The Y-A-S framework is well-suited to a two-dimensional trait-space because of the three

competing strategies it describes, but we choose to keep the space unidimensional and focus

on the ‘yield’ strategy. In addition to the biogeochemical importance of BGE, it also acts as

a metabolic master trait [187] from which others can be inferred, much like phytoplankton

size [238]. Respiration is a vital part of creating energy for a bacterial cell, and can be seen as

a proxy for all processes involved in maintaining cell functions [37]. This includes processes

that are central to resource acquisition and uptake, such as hydrolysis exoenzymes produc-

tion [13], ATP production [214] or rRNA copy number [193], but also stress tolerance, such

as accumulating carbon reserves when in risk of starvation [146] or producing fluid mem-

branes to avert freezing [179]. As a consequence, we can conclude that a cell that invests

more in bacterial growth will be less efficient in acquiring nutrients or defending itself: this

is the basis of evolutionary trade-offs (see Toolbox 2.1).
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Toolbox 2.1 Evolutionary trade-offs

Evolutionary trade-offs are an integral part of evolutionary biology since its inception

[250]. Charles Darwin refers to them as ‘correlation of growth’, and defines it in the

following manner:

I mean by this expression that the whole organisation is so tied together dur-

ing its growth and development, that when slight variations in any one part

occur, and are accumulated through natural selection, other parts become

modified. This is a very important subject, most imperfectly understood.

A more intuitive way to look at it is to notice that you can’t be good at everything at

once [110], and a good example of this is the classical r /K strategies in animals [216].

We can observe to general antagonist strategies when it comes to reproduction in an-

imals: they either spawn a lot of offsprings with low life-expectancy (the r strategy) or

few with high life-expectancy (the K strategy). Intuitively, a species spawning numer-

ous offsprings with high life-expectancy would outcompete both these strategies, but

this has never been observed in nature. You can’t be good at everything at once!

2.2 A mathematical description of the module

In this section, we translate the general considerations and design philosophy into mathe-

matical terms. We first describe the temporal dynamics of the ecological system, and then

integrate eco-evolutionary processes. We derive a general expression of the eco-evolutionary

stable strategy when the general model M fits simple assumptions.

2.2.1 Temporal dynamics of the population

Now that we know the general shape of our ecosystem, we need to describe its dynamics. The

input and waste fluxes depend on the global model M in which the module is implemented.

All fluxes are modeled as follows:

• In(M ) is the total influx of DOM. Its dependence on the global model M could repre-

sent steady fluxes of DOM from outside the model, egestion and waste from individual

bacteria or sloppy feeding by zooplankton amongst others.

• UB is the total bacterial uptake of DOM. We use a Monod representation [186] with

maximal growth rateλB and half-velocity constant KB . This representation was chosen

for its mathematical simplicity and wide variety of studies using it:
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UB =λB
DOM

KB +DOM
B (2.1)

• Bacterial production BP is then determined by the bacterial growth efficiency (BGE),

i.e. the fraction of the uptake that is eventually transformed in biomass. BGE is thought

to be partially genetically determined [233] and as such can be taken constant at the

scale of our bacterial population [263]. We note it ω, and thus have:

BP =ωUB (2.2)

• Bacterial respiration BP represents the fraction (1−ω) of the uptake not transformed

into biomass, with:

BR = (1−ω)UB (2.3)

• W (M ) is the bacterial waste production term. It can depend on the global model M

in multiple ways a regroups a wide variety of cases: grazing by zooplankton, infection

by bacteriophages and linear mortality are potential terms, but others could be used.

The dynamical evolution of the system can then be described by the following system of

ordinary differential equations:


dDOM

dt
= In(M )−UB

dB

dt
=ωUB −W (M )

(2.4)

2.2.2 Integrating bacterial adaptation

BGEω has been defined as being the evolutionary trait of the system. In the spirit of the Y-A-

S framework, we need to implement trade-offs such as when BGE decreases, stress tolerance

and resource acquisition both increase and vice-versa. As the saying goes, ‘a rising tide lifts

all boats’.

The trade-off between yield and stress tolerance is implemented in the waste production

term W (M ). This term being the ‘loss’ of bacterial biomass, we can assume that stress-

resistant strains on average lose less biomass than others. On the first order, we can define

an individual waste term w(M ) for bacterial individual such that:
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W (M ) = w(M )×B +o(B). (2.5)

If there is no bacterial biomass, there is no waste, so linearizing the system always leads

to this expression for waste production. We can implement the trade-off between yield and

stress tolerance by varying w with ω, i.e.:

w(M ) := w(ω,M ). (2.6)

In this context, w would be an increasing function of ω, since higher yield implies lower

resistance, hence higher individual waste production.

To represent the trade-off between BGE ω and resource acquisition, we use bacteria-

DOM specific affinity [36], defined as the initial rate of DOM uptake per capita per unit of

DOM concentration. In our model, the specific affinity α is defined as:

α := λB

KB
(2.7)

Specific affinity is an increasing function of the respired fraction (1−ω), so that a bac-

terium that invests quasi exclusively into growth (i.e. ω close to one) will be almost unable to

perform DOM uptake (i.e. an uptake rate nearing zero). Conversely, a bacterium that invests

quasi exclusively into uptake (i.e. ω close to zero) will not grow efficiently. The optimal value

for BGE must then lie between these two extremes.

In the general case, both λB and KB are functions of ω, the former being increasing and

the latter decreasing. In effect, we use the following relationship between half-velocity con-

stant KB and BGE ω to represent the trade-off in this thesis, with θA being the resource ac-

quisition trade-off constant:

KB (ω) := K 0
B

(1−ω)θA
(2.8)

2.2.3 Deriving the evolutionary equilibrium

In this section, we want to compute the evolutionary stable strategy of our bacterial popula-

tion regarding their resource allocation.

For now, the general model M has no constraints, which makes working on it impractical

and unrealistic. To be able to compute the evolutionary equilibrium state of the system, we

need to make some assumptions on the model M , which are simple enough to be met by all

models we aim to study yet still allow us to derive an evolutionary equilibrium.
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The evolutionary framework of adaptive dynamics assumes that ecological and evolu-

tionary timescales are separate: populations are considered at their ecological equilibrium

at all times. As such, for most of the thesis (with the exception of Chapters 4 and 6), we ex-

pect the model M to have a stable ecological equilibrium1. Under this equilibrium, we note

bacterial biomass, DOM concentration and relevant fluxes respectively B̄ ,DOM , ¯In(M ) and

W̄ (M ).

In order to determine the evolutionary stable strategy, we will consider successive dis-

crete trait change in the bacterial population, as successive invasions of new strains of bac-

teria unfold until the equilibrium is reached.

The first step towards this computation is to calculate the invasion fitness (see Toolbox

2.2) of a mutant population with trait ω′ over a resident population with trait ω. Then, by

iterating invasion events, we’ll eventually end up with a stable strategy that won’t be invaded

by its neighbors. Calculating the invasion fitness for this system starts by assuming the ap-

parition of a mutant bacterial population bearing the trait ω′ while the resident population

is at equilibrium. Its initial growth rate is the following:

Toolbox 2.2 Invasion fitness

The invasion fitness S(ω′,ω) of a mutant population ω′ over a resident ω is a measure

of the ability of an invading species to replace the resident. A positive invasion fit-

ness implies a fitter mutant, and conversely a negative invasion fitness implies a fitter

resident. If both populations are phenotypically close, the competitive exclusion prin-

ciple [112] allows us to conclude that only one population will prevail in this scenario.

This measure can be defined the following manner:

S(ω′,ω) :=

Per capita growth rate of an

infinitesimal mutant population ω′

with the resident population ω

at ecological equilibrium

(2.9)

We can intuitively understand why this measure works for our purpose: if the mu-

tant population is fit enough to thrive in an environment already invested by the res-

ident population, then it means that it must be fitter. We can then conclude the out-

come of the invasion event thanks to the competitive exclusion principle.

dB ′

dt
=ω′ ·λB (ω′)

DOM

KB (ω′)+DOM
B ′−w(ω′,M )B ′+o(B ′) (2.10)

1Working with periodic models would have been possible [227], but fixed environments with stable equilib-

ria allow us to work on the interannual scale rather than interseasonal more easily.
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From this equation, we can derive the invasion fitness S(ω′,ω):

S(ω′,ω) =ω′ ·λB (ω′)
DOM

KB (ω′)+DOM
−w(ω′,M ). (2.11)

Using the fact that the resident population is at ecological equilibrium, we can rewrite

the invasion fitness in the following fashion:

S(ω′,ω) =
(
ω′

ω
−1

)
·w(ω,M )︸ ︷︷ ︸

competitive advantage of higher yield

+ω′ ·
(
λB (ω′)

DOM

KB (ω′)+DOM
−λB (ω)

DOM)

KB (ω)+DOM

)
︸ ︷︷ ︸

competitive advantage of higher resource acquisition

+ (w(ω,M )−w(ω′,M ))︸ ︷︷ ︸
competitive advantage of higher stress tolerance

.

(2.12)

The structure of the invasion fitness follows the classical framework of the Yield-Resource

Acquisition-Stress Tolerance life history strategies defined in Malik et al. [170]. The first term

represents the competitive advantage of having a high yield strategy (i.e. high values of BGE):

it is positive for ω′ > ω and negative otherwise. Similarly, the second term represents the

competitive advantage of having a resource acquisition strategy and the third the competi-

tive advantage of having a stress tolerance strategy. Both these terms are positive for ω′ <ω

and negative otherwise.

We can derive the selection gradient dS(ω) from the invasion fitness by taking the deriva-

tive with regards to ω′, and computing the result on the value of resident trait ω:

dS(ω) = ∂1S(ω′,ω)|ω′=ω (2.13)

We then find:

dS(ω) = w(ω,M )

ω

+
(
λ′

B (ω)

λB (ω)
− K ′

B (ω)

KB (ω)+DOM

)
ωλB (ω)

DOM

KB (ω)+DOM

−∂1w(ω,M ).

(2.14)
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Following the selection gradient until a point ω∗ such as dS(ω∗) = 0 then leads us to a

locally stable evolutionary strategy.

2.3 Microbial loop adaptation in the aphotic zone

We begin with the simplest ecosystem in which we could integrate our module, that is the

microbial loop in the water column under the limit of the photic zone. In this zone span-

ning the limit of the ocean surface to the sediment floors, most of the remineralization of

nutrients takes place thanks to the work of heterotrophic bacteria [25].

We study two main risks threatening the water column: ocean warming [166] and strati-

fication [164]. Ocean warming is expected to increase carbon demand and respiration rates

for heterotrophic bacteria [263], changing the microbial loop’s capacity to remineralize nu-

trients, and ocean stratification may result in lower particle sinking rates, lowering carbon

export [143, 204]. In this section, we model the response of the microbial loop to increased

temperatures and stratification, and analyze the consequence for bacterial respiration and

carbon stock. The simplicity of the model allows us to perform most of the analysis by hand.

Fitting the module in the aphotic zone ecosystem

DOM

B

I

UB

BRW

R

(1-ε)W

εW

FIGURE 2.5: Model MNB of the microbial loop in the aphotic zone. B, bacterial biomass; DOM, dissolved
organic matter. All fluxes are described in the main text.

We fit the module into a model MNB of the microbial loop in the aphotic zone (Figure

2.5). Only resources (N) and bacteria (B) are considered, hence the name NB. Here, waste

production represents egestion and bacterial mortality, which will be modeled linearly. The

individual rate µB is considered constant for all environments and across bacterial strains,

meaning there will be no difference in stress tolerance between populations:
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W (MNB) =µB ·B (2.15)

A fraction ϵ of this waste directly feeds the DOM pool, and the dissolution of POM to

DOM (external to the system) is represented by an influx of DOM R constant for a given

depth [175]. The sum of both DOM fluxes equals the total influx of the system:

In(MNB) = R +ϵ ·W (MNB). (2.16)

The ecosystem model is then given by the following system of ordinary differential equa-

tions:


dDOM

dt
= R +ϵ ·µB B −UB

dB

dt
=ωUB −µB B

(2.17)

We introduce temperature-dependency in the system in order to study the impact of a

temperature increase on microbial loop activity. In this system, only bacterial maximum

growth rate λB is likely to strongly depend on temperature, so we apply the following Arrhe-

nius relationship:

λ0
B (T ) :=λT0

B exp

(
E A

k

(
1

T0
− 1

T

))
. (2.18)

In this relationship, E A represents the activation energy, k the Boltzmann constant, T0

the baseline temperature and λT0
B the constant value at T0.

2.3.1 Initial state of the ecosystem

Deriving the ecological equilibrium

In order to derive the expression of the ecological equilibrium from equation (2.17), we sim-

ply need to find the values (B̄ ,DOM) for which the time derivatives are equal to zero.

Using the bacterial biomass dynamics, we can derive the uptake rate UB at equilibrium,

which can then be used in the DOM dynamics equation to find the following bacterial biomass

at equilibrium B̄ :

B̄ = ωR

(1−ωϵ) ·µB
. (2.19)
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2.3. Microbial loop adaptation in the aphotic zone

This can then be used to derive the DOM concentration at equilibrium DOM :

DOM = µB

ωλB −µB
·KB (ω). (2.20)

These equilibrium values only make sense if ωλB > µB , which is logical: for bacteria to

thrive, they need to produce biomass faster than they die. In this case, the equilibrium is

stable and attractive. We assume this condition is met for the rest of the section.

The remineralization ratio r informs us on the strength of bacterial recycling of organic

matter to inorganic nutrients. Here, it is the ratio between bacterial respiration BR and ex-

ternal input of DOM R:

r = 1−ω
1−ωϵ (2.21)

The remineralization ratio is determined by two system parameters: the fraction of bac-

terial waste directly recycled as DOM ϵ and the BGE ω. For a fixed waste recycling constant

ϵ< 1, the remineralization ratio r is decreasing whenω is increasing: in such a simple system,

nutrient remineralization is directly correlated to the fraction (1−ω) invested in respiration

by a single bacteria. The relationship between remineralization and BGE is only linear for

ϵ = 0. For all other values of ϵ, the relationship between r and ω is concave: the remineral-

ization rate of the whole system is higher than the remineralization of a single bacterial cell

– thanks to waste recycling, the system as a whole is more efficient that the sum of the indi-

viduals. By definition, total remineralization is r ×R, so we can draw the same conclusions.

The turnover rate τ of DOM can inform us on how long carbon can stay locked in the

system [21]. We can calculate this by dividing the equilibrium concentration DOM by the

total uptake rate UB at equilibrium. We find:

τ= 1−ωϵ(
λB
µB
ω−1

)
(1−ω)θA

· K 0
B

R
(2.22)

The DOM turnover rate is inversly proportionnal to the external input in DOM R, show-

ing that oligotrophic environments have longer turnover rates than copiotrophic ones.

Computing the evolutionary stable strategy

To compute the selection gradient in this model, we use equation (2.14) with the trade-off

defined in equation (2.8). We find that:

dS(ω) = µB

ω
− θA

1−ω
KB (ω)

KB (ω)+DOM
·ωλB

DOM

KB (ω)+DOM
(2.23)
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Using the fact that the system is at ecological equilibrium, we can simplify the selection

gradient in order to find the following expression for ESS ω∗:

ω∗ =
1+ µB

λB
·θA

1+θA
. (2.24)

In this system and under the proposed trade-off, BGE is entirely determined by the death-

to-birth ratio and trade-off constant θA. We can easily check that ωλB −µB > 0. We The

closer the intrinsic death rate µB is to maximal growth rate λB , the closer ω is to 1 to sustain

the system. In a system limited by its nutrients, having a high mortality rate forces bacterial

population to be efficient with their resource.

The trade-off constant θA potentially has a range of all positive real numbers. On this

range, BGE decreases with increasing values of θA, with a lower limit of µB
λB

. This dependence

can be interpreted by looking at the more general equation (2.14): a higher trade-off depen-

dency favors the resource acquisition strategy, which mechanically lowers the value of BGE.

Finally, we can easily check that ω∗ is the point for which DOM concentration is at its

lowest: this is a form of the ‘pessimization principle’ which states that natural selection will

select populations that utilize the resource the most [80, 180].

2.3.2 Effect of ocean warming and stratification on the ecosystem

In this section, we independently vary environmental parameters to represent ocean warm-

ing and stratification. Ocean warming is represented by a temperature increase while ocean

stratification is represented by a decrease in external DOM input R. Indeed, since ocean

stratification lowers the amount of particles sinking, the hydrolysis of POM to DOM is likely

to decrease in the aphotic zone, which is represented by a decrease in R in our model.

Ecophysiological response of the ecosystem to temperature increase

The effect of a temperature increase on the system is to increase the maximum growth rate

λB , which will change the structure of the system. If we look at the temperature dependency

of equilibrium values from equations (2.19) and (2.20) with ω fixed, we find that bacterial

biomass stays constant while DOM concentration decreases when temperature increases

(Figure 2.6).

When temperature increases, the uptake rate increases per capita, but not the total DOM

input from bacterial waste and outside source. Since at equilibrium, both fluxes are equal,

a temperature increase mechanically decreases DOM concentration. The remineralization

ratio is independant from temperature when adaptation is not taken into account, since
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FIGURE 2.6: Carbon distribution variations to a temperature increase. B, bacterial biomass; DOM, dissolved
organic matter; R , external DOM input.

it only depends on temperature-independant terms (BGE ω and waste recycling constant

ϵ). As expected, higher temperatures imply faster fluxes between compartments, and DOM

turnoverτ decreases with increasing temperatures.

Ecophysiological response to ocean stratification

Looking at DOM input dependency of the equilibrium state from equations (2.19) and (2.20),

we find that in this case bacterial biomass decreases and DOM concentration stays constant

when the input decreases (Figure 2.7).
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FIGURE 2.7: Carbon distribution between compartments at equilibrium. B, bacterial biomass; DOM, dissolved
organic matter; R , external DOM input.

The fact that nutrient depletion impacts bacterial biomass and not DOM concentration

is a hallmark of a ‘bottom-up’ limited system, meaning that bacterial growth is limited by

the availability of resource, and not by external causes of death. Remineralization ratio is

once again unaffected by the environmental change, but total remineralization rates are de-
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creased. Finally, the decrease in bacterial biomass releases the pressure on DOM, decreasing

its turnover.

2.3.3 Bacterial adaptation and its impact

Bacterial adaptation is driven by the ecophysiological response of the system

Changes in environmental parameters will result in a shift in trait value due to natural selec-

tion, as pressure to adapt comes from a mismatch between the bacterial population and the

environment state. If we assume that ecological times are faster than evolutionary times,

environmental variation first results in the ecophysiological response of the system, and

this ecophysiological response then creates the mismatch between population and environ-

ment, inducing the pressure to adapt. We can understand ‘why’ bacteria adapt by looking at

the ecophysiological response of the system.

Increasing the temperature results in a decrease in DOM concentration. Resource is be-

coming scarcer, so bacteria investing in resource acquisition will be fitter than their ancestral

counterparts. Mechanically, decreasing the resource results in increasing the need for effi-

cient resource acquisition mechanisms. The temperature sensitivity of BGE ω depends on

the trade-off constant θA, as the more sensitive bacteria are to resource acquisition pressure,

the more they will have to adapt to a DOM concentration decrease. In this simple model,

decreasing the DOM input results in no variation of the ESS ω∗, since DOM concentrations

at equilibrium don’t depend on R.

Effect of bacterial adaptation on the system

The effect of bacterial adaptation is equal to the effect of varying the trait value fromω0 toω1

when the environment is at its final state e1 (be it temperature, DOM input, etc...). In more

complex cases, this effect can be numerically determined by comparing ecophysiological

and eco-evolutionary responses of the system, but the MNB offers us the opportunity to

study bacterial adaptation impact analytically by studying how key ecosystem functions vary

with regards to BGE.

Regardless of the direction of bacterial adaptation, its effect on the DOM reservoir is neg-

ative. Indeed, using the pessimization principle that was established earlier, we show that

BGE evolves towards minimizing DOM concentration in any environment. This allows us to

conclude that any predictions for the future of DOM in the oceans that doesn’t take bacterial

adaptation into account may overestimate the size of the reservoir.

To illustrate the other effects bacterial adaptation has on the system, let’s focus on a BGE
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decrease in the case of ocean warming2. Bacterial biomass decreases withω, leading to even

more oligotrophic oceans. The effect of bacterial biomass decrease on the recycling power

of the microbial loop is mitigated by the increase in remineralization ratio. DOM turnover

time is proportionnal to (1−ωϵ)DOM , so it is possible to actually see a slight increase in

DOM turnover times despite the decrease in DOM concentration if BGE decreases when the

fraction ϵ of waste redirected to the DOM pool is high enough. In those cases, DOM uptake

decreases faster than DOM equilibrium concentration.

2.4 Conclusion and perspectives

In this chapter, we have developed the basic eco-evolutionary module of the microbial loop

that will allow us to study its adaptation under climate change. The reasoning behind the

simplicity of the final module has been carefully explained, and the way to integrate it in

more complex models detailed.

This simple model studied shows that the eco-evolutionary response of the microbial

loop depends on the nature of environmental variations: ocean stratification implies an eco-

logical response of the system, while ocean warming could influence bacterial adaptation

more. It also provided proof that the recycling power of the microbial loop directly depends

on bacterial growth efficiency, and that eco-evolutionary feedback could both increase or

mitigate the effects of climate change. The relative power of the microbial loop is increased

in the case of BGE decrease, which could potentially stimulate new production in the sur-

face. On the other hand, this would also increase total DIC in the ocean. Changes in DIC

concentrations have a direct effect on the interaction between the atmosphere and the ocean

through the Revelle factor [88]. An increase in DIC could lead to an decrease of the Revelle

factor, which would mean a decrease in the capacity for the ocean to extract carbon from

the atmosphere. In conclusion, bacterial adaptation could have different consequences for

different components of the Earth system.

A drawback of the model is the lack of limiting nutrients for the bacteria other than DOM.

The focus of the thesis is indeed DOM recycling by heterotrophic bacteria, but they can be

limited by other nutrients, most notably iron (Fe) in some regions of the surface ocean [201].

Other factors can influence bacterial metabolism that can not be captured by our model,

such as the oxygen (O2) dependency deep in the water column [138].

After having focused on the water column, the next logical step for this thesis is to imple-

ment the microbial loop module in a sea-surface ecosystem. How does the microbial loop

adaptation influence major ecosystem functions such as primary production and carbon ex-

port? In the next chapter, we take a classical NPZ model in which we integrate the microbial

2All results can then be adapted for other environmental shifts leading to a BGE increase.
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loop to answer this question.
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Chapter 3

Predicting the response of primary

production to climate change
With Régis Ferrière, published in The ISME Journal [48]. Presented at AGU Fall Meeting 2021 [49].

‘You want a prediction about the weather, you’re

asking the wrong Phil. I’ll give you a winter pre-

diction: It’s gonna be cold, it’s gonna be grey, and

it’s gonna last you for the rest of your life.’

Phil Connors, Groundhog Day (1993)

In this chapter, we implement the microbial loop module in a larger ecosystem of the

ocean surface. We compare two scenarios of a warming ocean, one with bacterial adapta-

tion and one without. In both scenarios, temperatures are increased by 5oC, but bacterial

populations adapt their BGE in only one of the two. The comparison of variations will allow

us to conclude on the relevance of including eco-evolutionary processes in ESMs. Indeed,

if the variations induced by bacterial adaptation are comparable to the variations induced

by the temperature increase alone, then it must mean that adaptation is a key process that

needs to be taken into account for more accurate predictions.

First, we describe the model MNPZ-B in which we implement the microbial loop module

from the previous chapter. Then we perform the eco-evolutionary analysis and compare sce-

narios in presence and absence of bacterial adaptation. Finally, we discuss the implications

and opportunities of this study for a more comprehensive study in larger models.
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Chapter 3. Predicting the response of primary production to climate change

3.1 A sea-surface ecosystem model for ocean productivity

3.1.1 Predicting the future of primary production

Microorganisms dominate ocean biodiversity and play a major role in global ecosystem

function. As Falkowski, Fenchel, and Delong [94] aptly phrased it, Earth’s biogeochemical

cycles are driven by microbial engines. The ocean microbes’ response to current climate

changes has the potential to alter the global cycles of carbon and nutrients with likely feed-

backs to the climate system [226, 134]. To improve our projections of ecosystem function

such as primary production and better understand the future of climate, we need to assess

both how ocean microorganisms respond to climate change and how their response impacts

to the global environment [38].

The rise of sea surface temperature causes dramatic changes in the oceanic environment,

such as increased stratification resulting in weaker nutrient fluxes from the deep sea [30], de-

oxygenation [205], and sea-level rise [39]. How ocean microorganisms are affected, and how

these potential effects might propagate through the ocean ecological web is poorly known.

In particular, primary production response to warming is hard to predict, even on short tem-

poral horizons [107]. In some regions, not only the magnitude but even the very direction

of these responses remains uncertain [251, 150], notably because of complex interactions

between temperature, nutrient supply, and light.

Among ocean microorganisms, heterotrophic bacteria are key actors of nutrient cycling.

They remineralize dissolved organic matter into nutrients (the ‘recycling pathway’), and re-

direct otherwise lost organic matter to higher trophic links via grazing. Even though this

microbial loop is estimated to process about half of all primary production [96, 142], an ex-

plicit recycling pathway is often missing in models of global carbon and nutrient cycles, and

instead heterotrophic bacteria are treated implicitly [15]. Models that represent the micro-

bial loop explicitly [264, 132] point to complex interaction effects between recycling and sea-

surface warming: at a given temperature, models that include the microbial loop often pre-

dict a reduction in net primary production (NPP) [132]; however, when warming is predicted

to decrease NPP by models without a microbial loop, inclusion of the microbial loop can re-

verse that prediction [151]. It thus seems that the direction of changes in primary production

can in part be explained by the microbial loop and the balance between new and regener-

ated production. Our work aims at providing a mechanistic explanation for the direction

of primary production variations by focusing on the microbial loop response to sea-surface

warming.

A potentially important component of this response that is completely missing from

previous models is bacterial adaptation through selection, i.e., the selection of different,

more adapted bacterial strains. Bacterial adaptation may have important consequences

for the future of primary production: as individual cells respond physiologically to warm-
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ing, population- and ecosystem-level effects may feed back to the microbial community and

drive the selection of different bacterial strains. In return, such bacterial adaptation may al-

ter the ecological state of the system, thus entangling ecological and evolutionary dynamics

in a closed eco-evolutionary feedback loop [187]. Because of heterotrophic bacteria’s large

population sizes and short generation time [219] relative to the timescale of climate change,

we expect bacterial adaptation to play a role in their response to ocean warming [269], po-

tentially altering the balance between new and regenerated primary production. How much

and where then become key questions.

3.1.2 Ecosystem model

The ecosystem model in which the microbial loop module is integrated is adapted from bio-

geochemical modules of global circulation models, mainly Hasumi and Nagata [132] and

Aumont et al. [15]. The backbone structure of our model is a standard ‘NPZ’ model with

three pools: nitrogen N (often the common currency in models with only one nutrient, as

stated in Sarmiento and Gruber [236]), phytoplankton P, and zooplankton Z. We design our

model to accommodate a 0D setting to study the balance between new and regenerated pro-

duction by dividing the nitrogen pool into three: nitrate tracks new production, ammonium

tracks regenerated production, and DOM is expressed in its nitrogen content dissolved or-

ganic nitrogen (DON). Phytoplankton species are grouped into one compartment, and so are

heterotrophic bacteria; both share zooplankton as one compartment of a common preda-

tor, allowing for both emergent bottom-up and top-down limitations. The outcome is a 6-

compartment model MNPZ-B called NPZ-B (Figure 3.1).

As is done classically, we assume a type II (Monod) response of all uptake rates, U , to nu-

trient concentrations. To keep the model mathematically tractable, we assume that the re-

sponse of grazing rates, G , to population densities is type I: phytoplankton consumption by

zooplankton is seldom at saturation. Maximum rates of uptake and grazing are temperature-

dependent through an Arrhenius relationship, with different activation energies between au-

totrophic and heterotrophic organisms, ca. 0.3 eV for phytoplankton and 0.6 eV for bacteria

and zooplankton [45].

The additional fluxes from MNPZ-B can then be described as follow. c0 denotes the deep

ocean concentration of nutrients (expressed in its nitrogen content), which is mixed with the

euphotic layer with flux rate φ ([236]), for the following exterior input of nitrate from mixing

Mi x:

Mi x =φ · (c0 −NO−
3 ). (3.1)

UP,new represents the new gross primary production from nitrate NO−
3 :
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Microbial loop

Z

NH4

Gz
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Gp

W + SF

Up,new

Up,reg
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ZR BR

φ·(c0-NO3)
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DON

P

NO3
- +

FIGURE 3.1: MNPZ-B model for sea-surface ecosystems. B, bacterial biomass. P phytoplankton biomass,
Z zooplankton biomass, DON dissolved organic nitrogen. Fluxes driven by mortality are represented with
dashed lines and all end up in the DON pool. Respiration fluxes are represented with dotted lines, ending in
the ammonium pool. Red lines represent the incoming and outgoing fluxes of the system.

UP,new =λP
NO−

3

KP,new +NO−
3

P (3.2)

where λP is the phytoplankton maximum growth rate and KP,new is the half-saturation con-

stant for nitrate uptake.

UP,r eg is the regenerated gross primary production of phytoplankton from ammonium

N H+
4 :

UP,r eg =λP
N H+

4

KP,r eg +N H+
4

P (3.3)

where KP,r eg is the half-saturation constant for ammonium uptake.

UP is the total gross primary production:

UP =UP,new +UP,r eg (3.4)

µB , µP , and µZ denote the mortality rates of bacteria, phytoplankton, and zooplankton,

respectively. Overall, cell mortality represents ‘waste production’ W :

W =µB B +µP P +µZ Z . (3.5)
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GB , GP , and GZ measure grazing of bacteria, phytoplankton, and zooplankton, modeled

with type-I function response:

GB = gB B Z (3.6)

GP = gP P Z (3.7)

GZ = gZ Z 2. (3.8)

A fraction γB (resp. γP ) of bacterial (resp. phytoplankton) grazing is then converted to

zooplankton biomass, so that zooplankton production Z P can be written:

Z P = γBGB +γPGP . (3.9)

Another fraction σB (resp. σP ) is lost to the DON pool due to ‘sloppy feeding’. We can

then express sloppy feeding SF as such:

SF =σBGB +σPGP . (3.10)

In this model, the input of DON In(MNPZ-B) is then taken equal to the sum of waste pro-

duction and sloppy feeding:

In(MNPZ-B) =W +SF. (3.11)

Z R measures zooplankton respiration. Energy consumed that is not used for growth or

lost to sloppy feeding is assumed to be respired. This leads to:

Z R = (1−γB −σB )GB + (1−γP −σP )GP . (3.12)

The ecosystem model is then given by the following system of ordinary differential equa-

tions:
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dB

dt
=ωUB −GB −µB B

dP

dt
=UP −GP −µP P

dZ

dt
= γBGB +γPGP −GZ −µZ Z

dDON

dt
=W +SF −UB

dNO−
3

dt
=φ(c0 −NO−

3 )−UP,new

dN H+
4

dt
= BR +Z R −UP,r eg

(3.13)

The following parameters follow an Arrhenius-type relationship to temperature:

λP ,λB , gB , gP , gZ . (3.14)

The analysis scheme follows the layout described in Chapter 2: three sets of simulations

were run with the same parameters, corresponding to the computation of the system’s steady

state in three scenarios:

1. Initial adaptation: the system is at initial temperature T0.

2. Ecophysiological scenario: the system is at temperature T1 = T0 +∆T , with ∆T = 5oC,

and the model is controlled to prevent bacterial adaptation.

3. Eco-evolutionary scenario: the system is at temperature T1 = T0+∆T , with∆T = 5oC,

and bacteria are adapted to this new temperature.

Comparing the three scenarios allows us to derive the ecophysiological response of the

system and to isolate the effect of bacterial adaptation.

To analyze the responses of the microbial loop to warming, we focus on BGE, ω, and the

microbial loop efficiency (MLE), which represents the fraction of primary production that

cycles through bacteria and contributes to bacterial growth or respiration. To analyze the

responses of primary production to warming, we focus on both new and regenerated pro-

duction; we refer to the f-ratio as the ratio of new production over total primary production.

The f-ratio is relevant for the study of the balance of new and regenerated production, but

also export production: at ecological equilibrium, it is equal to the export ratio, or e-ratio

[236], which can be denoted by the ef-ratio.

Due to the complexity of the system, a numerical approach was used to compare differ-

ent biogeographical regions and their responses to sea-surface warming. A set of credible
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ranges was determined for each parameter to represent different regions of the ocean (from

nutrient-poor and warm regions such as the subtropical gyres to nutrient-rich and cold re-

gions such as the Arctic Ocean) and a latin hypercube sampling was used to run 1,000 simu-

lations (see Toolbox 3.1).

Toolbox 3.1 Latin Hypercube Sampling

When sampling high dimensional parameter spaces randomly, one runs the risk to

sample some regions significantly more than others. To circumvent this difficulty, one

may divide the parameter space along each axis according to the number of simula-

tions needed and sample each subregion once, ensuring no 2 simulations will share a

parameter value.

p1

p2

p1

p2

In the example above we sample four pairs of parameters (p1, p2) with random

sampling for the left example and latin hypercube sampling for the right example. A

simple way to understand latin hypercube sampling is to consider that we try to place

rooks in a chess game such as no two rooks threaten each other.

Parameter range estimation (Table 3.1) was done by drawing from two main resources,

with Bendtsen et al. [25] used for microbial loop parameters and Aumont et al. [15] for the

rest of the ecosystem. Where modeling differences occurred (such as the type of response for

zooplankton grazing), parameters were estimated for low saturation of resource, and overall

the model was tuned for obtaining an ecosystem were the concentrations had the orders of

magnitude found in Aumont et al. [15].

3.1.3 Initial state of the system

Ecological equilibrium

The first step is to compute the ecosystem equilibrium state at any given temperature. We

first express equilibrium steady-state in terms of the nitrate pool concentration N through

algebra on the dynamical system, and numerically derive the final solution.
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Parameter Minimum Maximum Unit

T 0.0 25.0 oC

c0 3.0 10.0 mmol·m−3

φ 0.01 0.1 day−1

λ0
P 2.0 5.0 day−1

KP,new 10.0 30.0 mmol·m−3

KP,r eg 0.5 5.0 mmol·m−3

µP 0.01 0.02 day−1

gP 0.2 1.0 day−1(mmol ·m−3)−1

σP 0.2 0.4

γP 0.3 0.5

λ0
B 0.5 1.5 day−1

K 0
B 0.5 1.0 mmol ·m−3

θ 2.0 4.0

µB 0.01 0.02 day−1

gB 0.05 0.15 day−1(mmol ·m−3)−1

σB 0.2 0.4

γB 0.3 0.5

µZ 0.01 0.02 day−1

gZ 0.8 1.0 day−1(mmol ·m−3)−1

E P
A 0.3 0.4 ev

E Z
A 0.5 0.6 ev

E B
A 0.5 0.6 ev

TABLE 3.1: Parameter range of the MNPZ-B model.
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First, we use the dynamics of total nitrogen content of the system to express zooplankton

biomass concentration in terms of nitrate N , dubbed z(N ):

z(N ) =
√

φ

gZ
(c0 −N ) (3.15)

Then, looking at nitrate dynamics at equilibrium, we find phytoplankton biomass p(N ):

p(N ) = φ

λ

(
KP,new

N
+1

)
(c0 −N ). (3.16)

Zooplankton dynamics allow us to compute bacterial biomass at equilibrium b(N ):

b(N ) = 1

γB gB
(µZ + gZ z(N )−γP gP p(N )) (3.17)

DON dynamics then allow us to find the expression of DON uptake by bacteria in terms

of nitrate uB (N ), with waste production w(N ) and sloppy feeding s f (N ) also expressed in

terms of nitrate:

uB (N ) = w(N )+ s f (N ) (3.18)

Finally, using bacterial dynamics we find the following equation which is verified when

nitrate concentration N is at equilibrium:

ω ·uB (N ) = gB b(N )z(N )+µB b(N ) (3.19)

Solving this equation numerically allows us to compute the equilibrium value of nitrate

concentration. We can then deduce the biomass concentrations of bacteria, phytoplankton

and zooplankton. DON dynamics then enables us to compute the equilibrium value of DON

concentration, and finally ammonium dynamics helps us find ammonium equilibrium con-

centration. We perfomed a large number of quality checks by comparing these results with

the long-term values of the numerical solutions of the system of differential equations (equa-

tion (3.13)).

Evolutionary equilibrium

Using equation (2.14) with the MNPZ-B model yields the following selection gradient:
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dS(ω) = µB + gB · Z̄

ω

−θ ω

1−ω · KB (ω)

KB (ω)+DOM
·λB

DOM

KB (ω)+DOM
.

(3.20)

The equation dS(ω) = 0 was numerically solved to find the ESS ω∗.

Initial adaptation analysis
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FIGURE 3.2: Distributions of model outputs at initial temperature T0 (top rows) and corresponding ecophys-
iological (green), adaptive (blue) and the combined eco-evolutionary (red) responses (bottom rows). The
adaptive effect represents variation in the ecosystem state driven by bacterial adaptation through selection
after a temperature increase. Black dots indicate median values. a Equilibrium biomass and concentrations.
See Fig. 1 for notations. b Microbial loop and ecosystem production outputs (separated by the black vertical
line). BGE bacterial growth efficiency. MLE microbial loop efficiency. All parameters vary in the default pa-
rameter ranges.
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3.2. Eco-evolutionary responses of the system and impact on productivity

Following adaptation to the initial temperature T0 (Figure 3.2), all equilibrium state vari-

ables correlate negatively with T0, except for inorganic nutrients (Figure 3.3). Warmer tem-

peratures accelerate fluxes between ecosystem compartments but do not increase nutri-

ent input: this acceleration is thus made at the expense of equilibrium concentrations and

biomass, which decrease across the temperature gradient (Figure 3.2a). Conversely, higher

nutrient input correlates with higher nutrient concentrations and population biomass.

a MLEb

FIGURE 3.3: Principal component analysis for ecosystem equilibrium values at T0. (a) Equilibrium state at
T0; (b) Key outputs at T0. All parameter values are described in Table 3.1.

Correlations across state variables at equilibrium bear the signatures of top-down con-

trols, with strong, negative correlations between inorganic nutrients concentrations and phy-

toplankton growth rate, and between phytoplankton biomass and grazing by zooplankton.

The f-ratio positively correlates with both BGEω0, and MLE. By re-injecting in the trophic

chain a fraction of the primary production that would otherwise be lost in the DON pool, the

microbial loop acts as a recycling process, thus driving the export ratio up.

3.2 Eco-evolutionary responses of the system and impact on

productivity

As temperatures increases, environmental parameters shift due to the ecosystem response.

This shift then drives bacterial adaptation, which in return influences the environment. In

this section, we resolve the ecophysiological response of the system and quantify the effect

of bacterial adaptation on the system.
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3.2.1 The direction of primary production variation is controlled by eco-

physiological changes in the microbial loop

An increase in temperature changes multiple physiological parameters, causing a shift in

the ecosystem equilibrium even in the absence of bacterial adaptation (green distributions

in Figure 3.2). The biomass of all populations (heterotrophic bacteria, phytoplankton, zoo-

plankton) and all nutrients concentrations tend to decrease. Even though individual process

rates tend to increase with temperature, the overall effect on the ecosystem equilibrium is

negative because nutrient consumption by phytoplankton and grazing both increase.

The general decrease in phytoplankton biomass observed across the parameter space

(Figure 3.2a) is to be contrasted with the distribution of primary production. In some cases,

primary production increases despite phytoplankton biomass decreasing (Figure 3.2b). This

decoupling is explained by faster phytoplankton metabolism, which increases per capita

primary production. Whether the effect of faster metabolism outweighs the decrease in

biomass and yields a gain of primary production depends on the balance between new and

regenerated production. While new production always increases with temperature, this is

not the case of regenerated production (Figure 3.2b). Total primary production increases

when the decrease in regenerated production is smaller than the increase in new produc-

tion.

a b c

FIGURE 3.4: Key parameters influencing the ecophysiological response of primary production to warming.
The number of simulations resulting in a negative (resp. positive) ecophysiological effect on primary produc-
tion are represented in blue (resp. green), with respect to (a) nutrient input φ; (b) initial temperature; (c) ratio
of temperature sensitivities (i.e., activation energies of uptake for phytoplankton, grazing for zooplankton).
These figures show that both nutrient limitation and temperature limitation are at play to explain the decrease
in primary production, but that the effect of nutrient limitation is stronger.

Both nutrient limitation and the relative temperature sensitivities of phytoplankton and

zooplankton are at play in this balance (Figure 3.4) with the effect of nutrient limitation being

stronger. Indeed, total dissolved inorganic nitrogen (DIN) concentration (i.e., the sum of ni-
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3.2. Eco-evolutionary responses of the system and impact on productivity

trate and ammonium concentrations) at initial temperature T0 is a key factor of the response

of primary production to warming (Figure 3.5a): positive in nutrient-rich ecosystems, neg-

ative in nutrient-poor ecosystems. Nutrient-rich ecosystems can sustain faster metabolism

of phytoplankton in warmer conditions, driving primary production up. In nutrient-poor

ecosystems, the increased maximum uptake rates result in stronger nutrient limitation, driv-

ing primary production down.
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FIGURE 3.5: Ecophysiological response of primary production towarming. (a) Influence of nutrient availability.
(b) Influence of microbial loop efficiency. Distribution of 1,000 simulation outputs with parameters sampled in
the ranges given in Table 3.1. In (a), the dashed line is the linear regression through the whole set of simulation
outputs. In (b), the red region indicates the kernel density of outputs for the resampled set of simulations
that yielded dissolved inorganic nitrogen concentrations (DIN) lower than 1.5 mmol·m−3 (see Table 3.2). The
dashed line represents the linear regression for the resampled simulations.

In the case of nutrient-poor ecosystems, the negative effect of warming on primary pro-

duction can be directly traced to a decrease in microbial loop efficiency (Figure 3.5b). By

resampling the set of parameters corresponding to nutrient-poor ecosystems (Table 3.2), we

find a significant positive correlation between MLE and the ecophysiological response of pri-

mary production to warming, which approaches zero in ecosystems where little to no change

occurs in MLE. This pattern is due to the fact that in nutrient-poor ecosystems, the main

component of primary production is regenerated production, which strongly depends on

microbial loop efficiency. In nutrient-rich ecosystems, primary production is driven mainly

by new production, and ammonium production relies equally on bacterial and zooplankton

respiration, thus causing a decoupling between primary production and microbial loop effi-

ciency. In other words, only in nutrient-poor ecosystems does primary production hinge on

the microbial loop.
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Parameter Minimum Maximum Unit

φ 0.01 0.05 day−1

KP,new 10.0 15.0 mmol·m−3

TABLE 3.2: Resampled parameter space for simulations yielding low DIN concentrations. All other parame-
ters are taken from the standard run in Table 3.1.

3.2.2 Bacterial adaptation in the microbial loop drives primary produc-

tion

We now assume that heterotrophic bacterial population can adapt to warming through se-

lection. In response to a temperature increase ∆T , the adapted BGE shifts from the ω0 value

adapted to the initial sea-surface temperature T0 to the new optimal value ω1 adapted to

temperature T1 = T0 +∆T . The concurrent change in ecosystem equilibrium state is the

eco-evolutionary response of the system to the ∆T warming increment (red distributions in

Figure 3.2). By measuring the difference between the ecophysiological response (without

bacterial adaptation) and the eco-evolutionary response (with bacterial adaptation) on the

ecosystem state variables we can quantify the ecosystem impact of bacterial adaptation to

warming (blue distributions in Figure 3.2).

Bacterial strains with BGE lower than the initially adapted value turn out to be competi-

tively superior in a warming ocean; as they replace the initial strain, BGE measured at the

scale of the bacterial population decreases (Figure 3.2b). This occurs in response to the

change in ecosystem state following from the ecophysiological response to warming. The

selection gradient of BGE (equation 3.20) reveals the two main controls of selection on bac-

teria: top-down control by mortality (including grazing), and bottom-up control by DON-
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FIGURE 3.6: Eco-evolutionary feedbacks mediated by bacterial growth efficiency (BGE), ω. (a) From ecology
to evolution: BGE adaptation as a function of the ecophysiological response of bacterial resource (DON) to
warming. Individual simulations are color-coded according to the initial temperature. (b) From evolution to
ecology: ecological impact of BGE adaptation on new and regenerated production. All parameters vary in the
default parameter ranges.
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limitation. Because the eco-physiological response of mortality to warming is always posi-

tive, the corresponding top-down agent of selection on BGE always intensifies with warming,

which favors bacterial strains with higher BGE. Yet the result of adaptation is a decrease in

BGE, showing that the system is under a stronger bottom-up limitation. Indeed, there is a

strong correlation between the decrease in DON concentration and the adaptive response of

bacteria (Figure 3.6a). In ecosystems with higher initial temperature, the increased mortality

and relatively low decrease in DON concentrations results in weaker adaptive responses. In

ecosystems with lower initial temperature, the decrease in DON concentration is stronger,

resulting in a decrease in BGE. This is a consequence of the growth efficiency—resource ac-

quisition trade-off, which favors resource acquisition when resource availability (here, DON

concentration) drops.

The effect of bacterial adaptation then ripples through the whole ecosystem in a trophic

cascade (Figure 3.7): the decrease in BGE drives bacterial production and microbial loop

efficiency down while increasing ammonium concentrations. This nutrient increase drives

phytoplankton biomass up, which adds pressure to the nitrate pool, thus decreasing the ni-

trate concentration. These variations in nutrient concentrations cause an increase in new

and regenerated production, but not evenly so, resulting in a decrease in f-ratio.

FIGURE 3.7: Correlation matrix of bacterial adaptation effects. Correlations underlying a potential causality
are framed, and white arrows show causality link. BP, bacterial production; MLE, microbial loop efficiency; P,
phytoplankton biomass; NP, new production; RP, regenerated production.

The adaptation of BGE to warming causes both new and regenerated production to in-

crease (Figure 3.6b). Importantly, the net primary production variation due to bacterial

adaptation to warming is of the same magnitude, or even greater than the ecophysiologi-

cal response of the system (Figure 3.2b). This underscores the importance of the microbial

loop and its evolutionary adaptative capacity to predict the response of primary production

and other ecosystem functions to warming.
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While the ecophysiological response to warming is controlled primarily by the availabil-

ity of nutrients (Figure 3.5), the initial temperature of the system is also a major determinant

of the eco-evolutionary response. In cold waters, warming causes a strong ecophysiologi-

cal decrease in DON concentration, which selects for lower BGE. In warmer environments,

the ecophysiological decrease in DON concentration is weaker, leading to a smaller adaptive

response of BGE (Figure 3.6a). Thus, we expect a two-dimensional gradient of temperature

and nutrient availability to shape the pattern of microbial adaptation (Figure 3.6a) and eco-

evolutionary responses (Figure 3.6b).

3.2.3 Warming causes different eco-evolutionary responses in different

biogeographic regions

To further evaluate the ecosystem impact of bacterial adaptation to warming, we focus on

four hypothetical biogeographic regions characterized by two different initial temperatures,

T0 = 5oC (cold) or 20oC (warm), and nutrient input rates, φ= 0.03 day−1 (poor) or 0.1 day−1

(rich).

The temperature difference captures the expected contrast between tropical zones and

high-latitude areas. The difference in nutrient input was chosen so that the low φ value

yields nitrate concentrations around 0.5 mmol ·m−3, which is typical of oligotrophic zones;

and the high φ value yields intermediate nutrient concentrations, ca. 2.0 mmol ·m−3. Warm

and poor environments are typical of subtropical gyres, while high latitude ecosystems are

typically cold and nutrient-rich.

For each of these four hypothetical bioregions, we performed 1,000 simulations with pa-

rameters sampled from the default parameter ranges as before while T0 and φ are fixed at

values assigned to the region. Hereafter we focus on the responses of the microbial loop and

primary production (Figure 3.8).

The initially adapted value of BGE tends to be larger in cold and/or nutrient-rich regions

(Figure 3.8a). With warming, these regions are also the ones where the adaptive change

in BGE is the largest (Figure 3.8b). As expected, primary production is in general much

larger in nutrient-rich regions (Figure 3.8c), with little influence of the initial temperature.

In nutrient-poor regions, ecophysiological effects of warming tend to be negative, whereas

the effect of bacterial adaptation is positive (Figure 3.8d). Thus, in nutrient-poor regions, the

decrease in primary production driven by the cophysiological response to warming may be

compensated by bacterial adaptation. In regions that are both nutrient-poor and cold, the

positive effect of bacterial adaptation may even exceed the negative ecophysiological effect,

causing an increase in primary production (Figure 3.8d).

Primary production shows contrasted ecophysiological and eco-evolutionary responses

to warming. This pattern can be understood from the responses of new and regenerated
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production (Figure 3.8e-h). The response of new production is similar in all regions (Figure

3.8f), and the contrast in primary production comes from regenerated production variation

(Figure 3.8e). As seen before, the ecophysiological response of primary production is driven

by regenerated production variation induced by nutrient availability–positive in nutrient-

rich regions, negative in nutrient-poor regions. In contrast, the effect of bacterial adaptation

is always positive (even if small on new production), but depends on the initial temperature

of the environment: the effect is larger in initially cold environments, smaller in initially

warm environments. This implies that the ecophysiological response of the system and the

effect of bacterial adaptation add up in regions that are both cold and nutrient-rich, such as

the Arctic Ocean, resulting in a strong increase in total primary production.

3.3 Conclusion and perspectives

Our study aims at improving our mechanistic understanding of nutrient cycling in the sur-

face oceans and its response to climate warming. We asked how the rise of sea surface tem-

perature alters the microbial loop efficiency and primary production, both ecophysiologi-

cally and through bacterial adaptation. Nutrient limitation turns out to be the main control

of the ecophysiological response of primary production to warming, controlling microbial

loop efficiency and thus the balance between new and regenerated production. We show

that bacterial adaptation is an equally important factor of the response of primary produc-

tion to warming, especially in cold oceanic regions. Our results highlight the importance

of two often underestimated components of biogeochemical ocean models, namely the de-

pendence of ecosystem production on the microbial loop, and the adaptive potential of mi-

crobial populations [262, 198].

3.3.1 Ecophysiological vs. eco-evolutionary predictions

When used to resolve the ecophysiological response of the ecosystem to sea surface warm-

ing, our model predicts general trends such as a decrease bacterial, phytoplankton, and zoo-

plankton biomass and an increase in top-down controls. This is consistent with other predic-

tions suggesting that oceans may become more oligotrophic over time [234], with stronger

top-down control by grazing [45]. Our model predicts that despite this general decrease in

population biomass, primary production may either increase or decrease with warming,

confirming that biomass measurements alone are poor predictors of changes in primary

production [267].

Changes in the balance of top-down and bottom-up controls of phytoplankton abun-

dance are thought to be important to assess the future of primary production in the face of

climate warming [150]. Our ecophysiological model provides a simple framework to evaluate
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this balance and predict the net response of primary production to warming. In agreement

with existing data [30, 150], our model predicts nutrient-poor areas to be more prone to a

decrease in primary production than richer regions, and provides a mechanistic explana-

tion for this pattern. In nutrient-poor environments exposed to warming, regenerated pro-

duction decreases faster than new production increases, resulting in an overall decrease in

primary production. The decline in primary production is a result of a change in the balance

between new and regenerated production due to a decrease in microbial loop efficiency,

further confirming the important feedback of the recycling pathway in oligotrophic envi-

ronments, as previously reported in Fenchel [96].

At ecosystem equilibrium, the f-ratio and the e-ratio are equal [236], meaning that new

production equals export production. This allows us to predict the ecophysiological re-

sponse of export production to sea-surface warming. Even though total primary production

can decrease due to increasing temperatures in nutrient-poor environments, this response

is fully driven by the decrease in regenerated production. New production increases across

all simulated systems, which means that export production increases in all regions.

Due to their fast metabolic rates and short generation time [219] relative to the timescale

of climate change, heterotrophic bacteria have a strong potential to evolve and adapt rapidly

to their changing environment. Our model was designed to predict the optimal strategy of

heterotrophic bacteria for resource allocation into growth in a given environment, or bac-

terial growth efficiency, under a trade-off with resource acquisition. As the environment

changes, the optimal strategy changes, and the consequences for primary production can

be evaluated. As sea surface temperature rises, the optimal BGE responds to two opposing

selective pressures, namely increased bacterial mortality and the depletion of dissolved or-

ganic matter. While nutrient abundance is the main driver of ecophysiological responses to

warming, environmental temperature shapes BGE adaptation. We find that increasing tem-

perature favors a bottom-up control of BGE, with decreasing concentrations of DON driving

the optimal BGE down. The DON decrease is stronger in cold regions, resulting in a stronger

adaptive response of bacterial populations.

These results provide new insights into the ‘link or sink’ behavior of the microbial loop

[96]. By recapturing otherwise lost organic matter and recycling or transferring it to higher

trophic levels, the microbial loop can increase export production (the ‘link’ behavior). On

the other hand, by fixing nutrients in bacterial biomass, the microbial loop can effectively

decrease export production (the ‘sink’ behavior). Across all simulated systems, adaptation to

warming drives BGE down and microbial loop efficiency decreases, with antagonistic conse-

quences for export production. One effect is to decrease the export ratio (equal to the f-ratio

in our model), acting as a sink. The opposing effect is to increase overall primary produc-

tion, which increases export production, acting as a link. Both effects on export ratio and

primary production are significant here, confirming the importance of taking both into ac-

count when assessing export production and its response to warming [151]. The increase in
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primary production is larger than the decrease of f-ratio, which eventually makes the ‘link’

component of the microbial loop stronger.

We predict eco-evolutionary processes mediated by heterotrophic bacterial adaptation

to shape contrasted biogeographical responses to warming, as bacterial optimal BGE fol-

lows a temperature gradient while ecophysiological responses follow a nutrient gradient. In

nutrient-rich regions, bacterial adaptation and ecophysiological responses combine syner-

gistically to increase both new and regenerated production. This is of particular significance

in already productive cold and rich regions such as the Arctic Ocean [278], where produc-

tivity is expected to increase in the coming years [161]. Our model predicts an even larger

increase due to bacterial adaptation. In nutrient-poor regions, the effects of bacterial adap-

tation oppose the ecophysiological decrease of primary production. In cold and poor re-

gions, adaptation mitigates the decrease in primary production, going as far as to reverse

it, whereas ecophysiology drives the overall response in regions that are both nutrient-poor

and warm.

Our results underscore the need to take adaptive processes into account in predictive

models of ocean productivity [271]. As BGE is often assumed to be independent of temper-

ature for a given strain of bacteria [263, 167], it is usually set as constant in biogeochemical

models, but we showed that natural selection acting on bacterial strains with varying BGE

could impact our prediction of future primary production in the ocean.

3.3.2 Bridging eco-evolutionary modeling and sequence data

Our modeling approach derived from evolutionary game theory [210] is purely phenotypical

in essence: BGE is treated as a quantitative character, heritable variation is assumed, and

adaptation to a changing environment is predicted as the outcome of optimization under

the constraint of a trade-off with resource acquisition. Under broad conditions [129, 90], the

underlying genetic architecture of the traits and genetic mechanisms of their variation do

not alter the phenotypic results. However, the study of microbial communities has benefited

tremendously from the expansion of our molecular sequencing capability and genomic and

other ‘omics’ analytical toolbox. These advances provide support for underlying hypotheses

in our models and present new opportunities to evaluate our key predictions, as we briefly

summarize hereafter.

‘Omics’ studies can support and inform phenotypic models by providing data on genes,

transcripts, proteins and metabolites to infer phenotypic trait variation within and between

populations, and uncover some of the underlying mechanisms such as selection and con-

straints. BGE is a challenging trait to extract from omics data [170] because it compounds

multiple underlying traits related to cellular maintenance, protein synthesis, and metabolic

and respiratory pathways [233, 193]. Saifuddin et al. [233] circumvent these difficulties and
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predict BGE by using genome-scale metabolic modeling subject to flux balance analysis

[246]. They resolve BGE variation across 200 bacterial taxa and provide support for the adap-

tive nature of this variation and for the growth efficiency—resource acquisition trade-off

used in our model. This is in support of other studies combining comparative genomics

with direct trait measurement by laboratory assays [193, 230].

Evidence from omics studies is also growing for the role of adaptive evolution in the

response of whole microbial communities to environmental change [176, 199, 242]. New

metagenomic computational pipelines hold much promise to extend pioneering evolution-

ary analyses done in small-scale systems such as the human gut microbiome [111, 282, 243]

to ocean microbial communities. For example, bioinformatic pipelines for microbial com-

munity metagenome assembly such as GraftM [31] and MetaPop [117, 58] can resolve micro-

bial metagenomic sequence data at intra-population level, identify Single-nucleotide poly-

morphisms (SNPs), calculate nucleotide diversity, and detect positive selection within popu-

lations. We expect such computational tools to greatly improve our ability to assess bacterial

adaptive evolution within natural communities such as those involved in the ocean micro-

bial loop.

Finally, ecosystem models that assume a simple relation between phenotypic traits and

gene-encoded biochemical pathways [241] pave the way for the development of phenotype-

based models of evolutionary adaptation that will directly simulate metagenomes and meta-

transcriptomes, hence opening the possibility to quantitatively test the predictions of mod-

els like ours with omics data.

3.3.3 Model extensions and conclusion

To our knowledge, this is the first model aimed to predict the effect of microbial adapta-

tion on ocean productivity. Previous models of biological adaptation in warming oceans ad-

dressed the impact of adaptation through selection on phytoplankton community diversity

[241, 255, 119, 238, 22]. Some of these studies suggest that adaptation may reduce commu-

nity diversity especially in tropical regions, leading to a potential decrease in primary pro-

duction in these regions [255]. Future work is warranted to probe the generality of this result,

integrate bacterial and phytoplankton adaptation in a common framework, and extend the

scope of potential adaptive responses to warming to a broader set of traits and trade-offs,

and to other functional groups. We highlight two areas of interest.

Regarding the set of traits and trade-offs, our model focuses on the growth efficiency

vs. resource acquisition trade-off, thus assuming that bacterial populations do not change

along the stress-tolerance axis of life-history variation. This assumption could be lifted in fu-

ture work. By using sequence data and computational tools to extract quantitative informa-

tion about stress tolerance traits, we should be able to extend existing comparative genomic
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analyses to obtain a more comprehensive and quantitative understanding of bacterial phe-

notypic variation in all three axes of life-history evolution: growth efficiency, resource acqui-

sition, and stress tolerance [170]. Such information is needed to account for stress tolerance

in predictive models of bacterial adaptation. Once done, it will be possible to address the

specific ecophysiological and eco-evolutionary effects of stressors such as extreme climatic

events on microbial loop efficiency, and their consequences for carbon and nutrient cycling.

Regarding the inclusion of other functional groups, viruses are of particular interest be-

cause of their dramatic direct ecological impact (e.g., the viral shunt of material fluxes [96,

277, 63]), their indirect role as physiological hijackers and selective agents of their hosts [33],

and their own capacity for record fast evolution and adaptation to ecological and environ-

mental change. Existing ecosystem models provide a solid foundation for such develop-

ments [274], which will contribute to a general workflow for integrating micro-organisms

evolutionary adaptation in global earth system models. Meta-omics tools and analyses that

have been developed specifically for marine viral communities [118] should help identify key

adaptive traits and trade-offs that would be captured in eco-evolutionary models.

In conclusion, bacteria adaptation to warming can drive changes in ocean primary pro-

duction of the same magnitude as the ecophysiological response, especially in the most pro-

ductive areas such as the Arctic Ocean. While ecophysiological mechanisms may accurately

predict short-term responses of ecosystem function to seasonal variation in temperature, we

expect eco-evolutionary responses to be important on multi-annual timescales, over which

bacterial populations may evolve and adapt to long-term trends in temperature. Our model

provides a critical step towards the integration of microbial eco-evolutionary processes in

ocean ecosystem models, necessary for improving our projections of ocean nutrient cycle in

a warming world.
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Natural selection in Earth system models
With Anh Le-Duy Pham, Olivier Aumont and Régis Ferrière, in progress. Presented at AGU Fall

Meeting 2021 [47].

‘Mutation: it is the key to our evolution. It has en-

abled us to evolve from a single-celled organism

into the dominant species on the planet. This pro-

cess is slow, and normally taking thousands and

thousands of years. But every few hundred millen-

nia, evolution leaps forward.’

Professor X, X-Men (2000)

Given the importance of the ocean-atmosphere coupling, predicting the future of bio-

geochemical cycles in the ocean is a major challenge for understanding climate change.

Earth system models (ESMs) are general models designed to represent the interactions be-

tween the different ‘systems’ of the planet: physical evolution of climate, biogeochemistry

and anthropogenic influence [103]. Developed to simulate the oceans and forecast its future

state , they are successful at fitting past and current observations, but their forecasting capac-

ity is limited by large levels of uncertainty. Even though significant efforts have been made

to account for biological processes of increasing complexity in ESMs, these models remain

agnostic to a fundamental ability of life: that of evolving and adapting in response to envi-

ronmental change. This is especially true of microbial populations, with their remarkably

large sizes and genetic diversity. As the ‘microbial engines’ of biogeochemical cycles evolve

and adapt to changing environments, they may in return alter the global biogeochemistry of

our planet. Predicting to what extent was the question at the core of this chapter.

To address this question, we implement eco-evolutionary processes in ESMs in a way that

aim at computational efficiency and biological consistency. Our approach basically extends

the selection gradient equation of adaptive dynamics to global ocean ecosystem models.
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We test our approach in a low-dimensionnal proof-of-concept setting, and implement it in

the NEMO-PISCES ESM by focusing on the adaptive evolution of bacterial growth efficiency

(BGE) in heterotrophic bacteria. We find that BGE values exhibit a consistent biogeographi-

cal pattern that correlates with labile DOC concentrations, and that taking bacterial adapta-

tion into account introduces a new layer of uncertainty in primary production forecasting.

4.1 Eco-evolutionary processes in ESMs, a current blindspot

4.1.1 The importance of adaptation for climate forecasting

The ocean plays a major role in the carbon cycle. It holds fifty times more carbon than the

atmosphere [93] and absorbs more than a quarter of all anthropogenic emissions of carbon

due to the sheer size of its surface [272]. Oceanic life in particular is central to biogeochem-

ical cycles: half of all primary production in the world comes from phytoplankton [92], and

oxygen minimum zones depend on the presence of aerobic bacteria [205].

Yet the future of ocean biogeochemical cycles under climate change is uncertain. The

rise of carbon concentration can lead to acidification [225], and sea surface temperatures

rising may cause weaker nutrient fluxes from the deep sea [30], deoxygenation [205], and

sea-level rise [39]. Those changes may have dramatic consequences on ecosystems [23, 38],

which may feed back to the atmosphere and further alter the Earth’s climate.

General circulation models (GCMs) have been developed to understand and predict the

dynamics of the ocean-atmosphere interface and forecast the future of the carbon cycle [91].

Improving predictions and forecasts requires constant complexification and refinements.

Notably, biogeochemical cycles driven by oceanic life are now included in most models [102],

turning GCMs into Earth system models (ESMs). However, the integration of biological and

ecological processes remains fragmentary. In particular, heterotrophic bacteria and the mi-

crobial loop are represented in some models [132] but not others [15].

Ecosystem models are calibrated on data from past and current states, and forecasting

assumes that species a hundred years from now will not be sensibly different from what they

are now [137]. While this may be a reasonable approximation for organisms with long lifes-

pans and generation times such as large vertebrates, this may not be apply to the bulk of

biodiversity: microorganisms that are known to evolve and adapt rapidly to changing envi-

ronments [111, 282]. As microbial life is central to biogeochemical cycles [94], taking into

account microbial adaptive capacity appears to be paramount for a better understanding

and forecasting of our oceans and climate. [137, 187].

As the planetary environment changes, the ocean microbiome will evolve and adapt, and

feed back to the global Earth system. The inclusion of such eco-evolutionary processes in
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4.1. Eco-evolutionary processes in ESMs, a current blindspot

ESMs has been a research focus in recent years [271, 154], but difficulties remain that ham-

pers implementation. There is a need for a mathematical and computational framework

that is both simple and operational enough as to be run effectively, and biologically valid as

to give meaningful predictions. In this chapter, we address this challenge by shifting from

mechanistic models of eco-evolutionary processes to phenomenological descriptions rely-

ing on the macroscopic models of adaptive dynamics.

4.1.2 State of the art

Here we present a brief overview of existing frameworks and highlight the underlying com-

mon principle. A more comprehensive review is to be found in Ward et al. [271]; here we only

focus on their methodological specificities.

A brief review of existing frameworks

The ‘brute force’ method to integrate eco-evolutionary processes in an Earth system model

would be to implement an individual-based model (Figure 4.1a), where each individual is

represented by their phenotype (typically a quantitative trait or suite of traits). When an indi-

vidual reproduces, there is a non-zero probability that their offspring has a slightly different

phenotype, caused by a mutation in the underlying genotype. On the long term, this process

fuels the evolutionary adaptation of the population, in a feedback loop with its environment

(see Chapter 1). Such a simulation approach, however, is computationally prohibitive, given

the size of the microorganism populations that we focus on, and the computational demand

of ESMs in and on itself. Consider cyanobacteria: a single milliliter of sea water contains

about 100,000 individuals [104]. In a dynamic ocean where water masses flow and mix, the

number of interactions integrated over the ocean would be literally astronomical. In order to

circumvent this difficulty, several options are conceivable (Figure 4.1). Some models repre-

sent populations as densities on a continuous trait space (Figure 4.1b), and eco-evolutionary

processes are implemented as a diffusion process [154]. But integrating over both the trait

space and geographic space remains computationally unaffordable, and further approxima-

tions are needed. One may assume that the population trait density follows a normal law

[154], leading to explicit mathematical expressions for the evolution of trait mean and vari-

ance (Figure 4.1c). This approach raises two issues: first, when two distributions from two

water cells mix, the resulting distribution is far from a normal distribution, which may not be

captured by this model; secondly, assuming trait densities other than Gaussian distributions

could lead to drastically different results. Another approach is to discretize the trait space

(Figure 4.1d), and thus constrain the number of possible phenotypes. Recurrently then, the

less adapted phenotypes are replaced by new phenotypes, which are generated stochasti-

cally [58] or deterministically [158, 238]. Here a significant issue stems from the definition of
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which phenotypes to replace: one might replace the least abundant [58] or merge the most

similar [54], but either option remains somewhat arbitrary. Finally, one could do entirely

without trait diversity, and focus on monomorphic populations (Figure 4.1e). New pheno-

types would appear one at a time, with each invasion being resolved by determining which

phenotype is fitter [148]. The limitation here lies in strong biological assumptions, such as

populations at ecological equilibrium, new populations at initially very small densities or

mutations appearing one at a time.
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All individual of a 
population are explicitly 
represented, and each 
individual can be 
represented by a unique 
trait. Community 
function emerges from 
individual properties.

This simulation scheme 
is too costly to run on 
current computers.

Populations are 
represented as trait 
densities, and evolution 
as trait diffusion. 
Community function 
emerges from intra- and 
extra-specific 
interactions.

This simulation scheme 
is still too costly to run 
on current computers.

Density is assumed to be gaussian 
to reduce the dimension of 
integration (from infinity to 2).

Density is discretized to reduce the 
dimension of integration (from 
infinity to the number of potential 
traits).

The population is assumed to be 
monomorphic at all times, with 
evolution acting through successive 
mutant invasions.

FIGURE 4.1: Current simplification schemes for integrating eco-evolutionary processes in Earth systemmod-
els. Left to right, from the most complex to the simplest. (a) Individual-based models; (b) Density-based
models; (c) Density law assumption; (d) Phenotypic space discretization; (e) Monomorphic population as-
sumption.

Despite the important differences between the models we briefly described, they all share

an underlying principle. At their core, all these models try to simplify individual-based mod-

els to make them computationally tractable through assumptions of large populations, small

mutations or trait diffusion. All these models describe adaptive evolution as a stepwise pro-

cess in a mechanistic way: first, new genotypes are generated, either through mutations or

immigration; then, the fittest phenotypes are selected. Models may differ in the way they

perform phenotype generation (stochastic vs. deterministic) or subsequent selection (as the

outcome of explicitly modeled ecological interactions, or through a fitness function derived

from the ecological model). These two steps represent what we call the ‘generation-selection’

cycle.
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4.2. A proposed alternative: the selection gradient equations

4.2 A proposed alternative: the selection gradient equations

Here, we propose an alternative modeling approach by departing from mechanistic mod-

els of the generation-selection cycle and favoring a phenomenological approach (Figure

4.2). If we assume that adapting populations follow a selection gradient, we can use eco-

evolutionary theory to derive an equation governing the dynamics of population pheno-

types, and then integrate them in ESMs. By doing so, we can avoid a large fraction of the

computational cost of the more mechanistic models, while taking advantage of the body of

eco-evolutionary theory.

Generation

Selectio

n

Ecology Ecology

Selectio n Pressure

a b

FIGURE 4.2: From the ‘generation-selection’ cycle (a) to the selection pressure (b): a paradigm shift.

4.2.1 Keeping the basic structure of current ESMs

The goal of our approach is to fit as seamlessly as possible into current ESMs by adopt-

ing their ecosystem modeling principles. This will facilitate the comparisons of our pre-

dictions with previous, non-evolutionary model output and thus to quantify the effect of

eco-evolutionary processes on scenarios of future ecosystem and climate change.

One critical step of our approach is to avoid describing the diversity of phenotypes at

any point in time within a population. The representation of trait diversity would funda-

mentally alter the algorithmic structure of current ESMs. Biogeochemical components of

current ESMs such as PISCES [15] are compartment models in which metabolic traits are

shared across organisms in each compartment (Figure 4.3). For instance, the same temper-

ature dependency (represented by the Q10 trait) is shared amongst all diatoms in the PISCES

model. This modeling strategy allows us is to keep the original ecological models used in cur-

rent ESMs intact, with eco-evolutionary processes implemented as a way to have dynamical

parameter values. Instead of a set of individuals expressing potentially different trait val-

ues, we focus on the mean trait value and assume that the underlying mechanism of trait

variation (i.e. genetic mutation) only causes small changes.

Describing the adaptation dynamics of the traits is done through a differential equation.
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FIGURE 4.3: Architecture of PISCES. This figure only shows the ecosystem model omitting thus oxygen and
the carbonate system. The elements which are explicitly modeled are indicated in the left corner of each box.
Figure taken from Aumont et al. [15].

Hereafter we focus on a one-dimensional trait space, and explore higher dimensionality in

the ‘further developments’ section. Although the one-dimensional trait case may appear

limited in scope, it is rich in practical applications: for example, cell size is an integrative

trait that influences many secondary traits in phytoplankton populations, and heterotrophic

bacterial growth efficiency is an ‘effect trait’ of major significance for nutrient cycling and

ecosystem function. We denote the one-dimensional trait by x and describe its adaptive

evolution through the following equation:

dx

dt
=Σ(x,E) (4.1)

where E represents all relevant environmental parameters and Σ(x,E) denotes the selection

‘pressure’.

Key to our modeling approach is to apply equation (4.1) to each single water cell. This

allows us to keep our model consistent with the biogeochemical structure of current ESMs

such as NEMO-PISCES [15], where biogeochemical fluxes are simulated exclusively through

the use of oceanic tracers [123]. Tracers are properties of a water cell that can be physical (e.g.

temperature), chemical (e.g. salinity) or biological (e.g. phytoplankton biomass) [236]. They

can either be physically ‘extensive’ (such as biomass) or ‘intensive’ (such as temperature)

depending on how they behave relative to water cell mixing. Defined as such, our trait x
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4.2. A proposed alternative: the selection gradient equations

cannot be considered a tracer – to keep track of its time dynamics, we need to define a new

tracer that takes the trait into account. If x is the trait of a population with biomass P , we

define the tracer Tr (x) = x ×P . We can then find the value of our trait x by dividing this new

tracer by the population biomass. The resulting trait of two water masses mixing will be the

weighted average of each trait relative to the population biomasses.

We emphasize that this solution is in and of itself an approximation, but argue that it may

not cause much more error than methods that pre-define the shape (e.g. Gaussian) of a trait

distribution [154]. Our approach amounts to approximate the trait of the average population

by the weighted average of the traits, which is a reasonable approximation in most cases.

4.2.2 Defining the selection gradient

Based on the canonical equation of adaptive dynamics [79, 40], we propose the following

analytical form for the selection pressure:

Σ(x,E) =α ·N ·P (x,E) (4.2)

where α is the adaptation capacity of a given taxon, N the population size and P (x,E) the

selection gradient. We assume that trait x can be represented by a certain unit u, such as

[x] = u and that population size N can be represented by a unit N (which can be biomass

density, population count, etc...). Time is represented by an arbitrary unit T.

The α parameter represents the adaptive capacity when normalized for population size,

with [α] = u·T−1 ·N−1. In the absence of data on mutation rate and variance, theα parameter

may be difficult to calibrate directly; calibration should be done instead based on the cred-

ibility of model outputs. We assume that rate of adaptation is proportional to population

size: larger populations can generate more variation that fuels adaptation. Finally, we need

to define the selection gradient P in the context of ESMs. Simple dimensional analysis tells

us that this measure should be dimensionless, and there are three ingredients that should

enter its derivation:

1. If the population stands at an evolutionary stable strategy x∗ [98] for a given environ-

ment E , then P (x,E) = 0. A population reaching an evolutionary stable strategy may

not evolve any further. Conversely, if the population is phenotypically far from its evo-

lutionary stable strategy, selection should ‘push’ towards locally fitter traits.

2. It needs to be locally computable, both spatially and temporally. Some studies [72] cal-

culate the expected attractor (point equilibrium) of adaptation a priori; then the selec-

tion gradient is modeled as a ‘restoring force’ which drives adaptation. Other studies
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[227] average the gradient over time. These approaches are not computationally vi-

able in a dynamic environment as spatially complex as the global oceans, and we need

a measure that can be easily computed at each grid cell, at each time step. In addi-

tion, this is consistent with the fact that selection gradients act at all times, and in all

environments locally.

3. The selection gradient model should be prone to biological interpretation. The model

should be consistent with biology and not a an ad hoc mathematical construction.

This is needed to allow biological interpretations of the process at all relevant spatial

scales, from local to regional to global, and at each time step. For instance, this sug-

gests that we should avoid deriving a model for the average trait from one that assumes

forces a specific arbitrary mathematical form for phenotype space or trait distribution.

These criteria insure that our equation will stick as closely as possible to the biological

reality of ecosystems while being computationally cheap.

We use the selection gradient P from the adaptive dynamics modeling approach, which

is based on the concept of invasion fitness [98]. The invasion fitness measures the ability of a

given phenotype to invade and replace a resident population that was at ecological equilib-

rium, and is defined as the initial growth rate of the invading population. The underlying as-

sumption is that a phenotype that is able to grow (as a population) in an environment where

a resident population is at equilibrium, will eventually outcompete the resident. If both phe-

notypes are close enough as to essentially share the same ecological niche, the competitive

exclusion principle implies that the invasive population will replace the resident population

[115].

We emphasize that the derivation of the selection gradient from invasion fitness does not

assume an actual sequence of mutation, invasion and selection. The ‘mutation-invasion-

selection’ cycle is a mathematical treatment (timescale separation) which allows to derive

the selection gradient and thus obtain a model of the continuous-time dynamics of the adap-

tive trait.

Invasion fitness is usually defined for an ecosystem at ecological equilibrium, which is

not the case here: we need an equivalent for non-stationary systems. For this equivalent, we

use the instantaneous invasion fitness defined as the difference ∆rx ′,x between the invading

and resident population growth rates when the invading population is infinitesimally small

compared to the resident. Similar approaches have been developed in other works, notably

in Dercole et al. [74] for stationary but out-of-equilibrium ecologies, and Cortez and Ellner

[60].

S̄(x ′, x) :=∆rx ′,x (4.3)
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This quantity measures whether a new population is fitter than a population already es-

tablished in that niche. When the resident population is at ecological equilibrium, this def-

inition matches standard invasion fitness. For phenotypes that are close enough (and away

from an evolutionary stable strategy), this quantity will be positive on only one side of the

resident trait, thus giving the direction of evolution (Figure 4.4).
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FIGURE 4.4: Computing the direction of evolution from the extended invasion fitness.

We then define P as the gradient of the instantaneous invasion fitness, representing the

gradual change of population trait over time (normalized by s0 = 1 for the sake of dimension

consistency). Using the same notation as in the previous chapters, we find:

P (x,E) := dS̄(x)

s0
(4.4)

This measure captures both the direction and the strength of selection and fulfills our

three criteria:

1. By definition of the gradient, selection ‘pushes’ population traits towards a convergent

stable strategy.

2. The selection gradient stems from a growth rate, and is thus locally computable at any

point in time.

3. It offers a biological interpretation, namely the differential of effective growth on either

side of the resident trait.

Finally, we can write the complete selection gradient equation as follows:

dx

dt
=α ·N · dS̄(x)

s0
(4.5)

71



Chapter 4. Natural selection in Earth system models

4.2.3 Pros and cons of the method

A selection gradient modeling approach holds promises for the integration of evolutionary

adaptation and eco-evolutionary feedbacks in global ecosystem models. Here we emphasize

some caveats.

First, as mentioned before, this conceptual framework does not include phenotypic di-

versity within a population. This is at odds with previous eco-evolutionary studies in which

phenotypic diversity is central: speciation [231], seasonal phenotypic variations [22] or phy-

logeny [176]. As we develop a framework to fit eco-evolutionary processes into current ESMs

and study the future of biogeochemical cycles on long timescales, the lack of an explicit rep-

resentation of phenotypic diversity may not be critical.

Similarly, since population adaptation works on timescales of multiple generations, this

method is only fit for studies taking place on long timescales. As such, it is relevant for the

study of biogeochemical cycles under climate change, but less so for the study of seasonal

ocean dynamics, such as algal blooms.

Finally, our method only deals with population phenotypes without an explicit genotype-

phenotype map. One drawback is to prevent linking models with omics data, that advancing

technologies are generating at exponential rates [176]. Bridging the gap between ’omics data

and our proposed framework for integrating eco-evolutionary processes into ESMs should

be a research focus for the near future, following the path charted by studies such as Coles

et al. [58].

In spite of these limitations, our method is cost-effective from a computational stand-

point. It is algorithmically compatible with the current generation of ESMs and the model

outputs lend themselves to biological interpretation, especially with respect to comparing

ecosystem trajectories with and without adaptive trait variation and eco-evolutionary feed-

backs.

4.2.4 Theoretical evaluation in a chemostat model

In order to evaluate our framework, we implemented the selection gradient equations in an

ecosystem toy model with no spatial component. By comparing eco-evolutionary dynamics

predicted by the selection gradient equation to individual-based simulations, we can assess

the performance of the former.

Toy model and analysis

In this simple chemostat model (Fig 4.5), we consider a single bacterial population B and a

single resource R, with an input and washout rate J . The state of the environment is mea-
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J J

R0 R

B

rt (x,e)·R·B

FIGURE 4.5: The one-compartment chemostat model. R0 represents the constant resource concentration in
the reservoir, R the resource concentration in the chemostat, B the bacterial biomass in the chemostat, J the
washout rate, rt the individual bacterial growth rate, x the bacterial trait and e the environmental parameter.

sured by a time-series Et , which can be parametrized to be constant, or change linearly or

randomly (e.g. as a Brownian motion) with time. The fitness of a population relative to the

current environment can then be represented by a single trait x, and the individual growth

rate depends on the distance between the trait and the environmental measure:

rt (x) =λ ·exp
−

(
x−Et
σ

)2

·R (4.6)

The closest we can get to mechanistically represent adaptation in such a setting is through

an individual-based model, that we implement with a rigorous Gillespie algorithm [42] by

assigning a constant carbon content q to bacterial cells. We derive the selection gradient

equation under the assumption of large populations (which allows us to treat population

and resource abundance as density and concentration, respectively). Under this assump-

tion, the density dynamics can be described by the following set of equations:


dR

dt
= J · (R0 −R)− rt (x) ·B

dB

dt
= rt (x) ·B − J ·B

(4.7)

From this set of equations, we derive the selection gradient at each time step:

dS̄(x) =−2× x −Et

σ2
× rt (x) (4.8)

The selection gradient equation is implemented with Newton’s method at each timestep

for different values of α. This allows us to compute the equation dynamically even in com-

plex cases such as the environment fluctuating as a Brownian motion. We score the outputs

of the selection gradient equation according to their L 2-distance to the mean trait of the

individual-based model.
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J J

R0 R1

B1

rt (x1,e1)·R1·B1

R2

B2

rt (x2,e2)·R2·B2

J

FIGURE 4.6: The two-compartment chemostat model. R0 represents the constant resource concentration in
the reservoir, Ri the resource concentration in the i -th chemostat, Bi the bacterial biomass in the i -th chemo-
stat, J the washout rate, rt the individual bacterial growth rate, xi the bacterial trait and ei the environmental
paramter in the i -th chemostat. All parameters are defined in Table 4.1.

Finally, we implement the method for a two-compartment chemostat model in which

each compartment has a different environmental parameter (Figure 4.6). Material from the

first compartment drains into the second compartment, and we parametrize the model such

as the main source of trait variation in the second compartment comes from mixing with the

first. The α value is shared between both compartments.

Parameters used for the simulations are described in Table 4.1.

Parameter Value Unit

R0 2.5 mmol·m−3

J 0.5 h−1

λ 1 h−1

σ 1 -

q 1E-3 mmol

α variable h−1 ·mmol−1 ·m3

TABLE 4.1: Simulation parameters for the chemostat models.

Results and conclusions

When varying α logarithmically in the range [2.5 ·10−8;2.5 ·10−3] h−1 ·mmol−1 ·m3, we find

values that yield a good approximation of the trait distribution mean regardless of the en-

vironmental dynamics (red lines in Fig. 4.7). When α is too low, the inertia is too strong

and does not capture rapid adaptation to a new environment. Conversely, high values of

α can lead to trait values sticking to the environmental value, showing the importance of

parametrization.

We computed the selection gradient equations for different population sizes by varying
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Trait distribution mean Environmental measure Selection gradient equations

b ca

FIGURE 4.7: Comparing the selection gradient equations to individual-based simulations under three envi-
ronmental conditions. (a) Discontinuous variation. (b) Linear variation. (c) Brownian motion. The mean of
the trait distribution is represented in black, and the environmental parameter in dotted gray lines. The se-
lection gradient equations (red lines) were computed for different values of α, and represented with different
shades according to their distance (in the L 2 sense) to the prediction from the individual-based model. All
parameters are defined in Table 4.1.

bacterial content q by a factor 10 and increasing adaptation speeds through increasing mu-

tation probabilities (Figure 4.8). The selection gradient equations are scored according to

their distance to the mean trait of the individual-based model, with shades that are inversely

proportional to their L 2-distance.

To compute these scores, we used the same parameters across simulations. For some

simulations, a large number of outputs from the selection gradient equations with different

α values stand out in the figure. This indicates that the simulations have trouble distinguish-

ing which value fits the mean trait best. We conclude from this observation that the method

is unfit for small populations, in which stochastic variations are much more important and

cannot be captured by the selection gradient equation. However, the results are robust to dif-

ferent adaptation speeds when the population is large enough. In particular, fast adaptation

can be captured by our model.

In order to test the influence of mixing, we examine the two-compartment chemostat

model in which the environmental variation is driven by a Brownian environment in the

first compartment while the environment is constant in the second compartment. Thus, the

only trait variation in the second compartment comes from mixing, allowing us to evaluate

the method for mixing water cells (Figure 4.9).

We find that even when trait variation comes exclusively from mixing with other water

cells, the selection gradient equation can be parametrized to fit both a compartment where

trait variation comes from natural selection (compartment 1) and a compartment where trait

variation comes from mixing (compartment 2).
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FIGURE 4.8: Comparing the selection gradient equations to individual based models for different population
sizes (top to bottom) and adaptation speeds (left to right). The selection gradient equations were computed
for different values of α, and represented with different shades according to their distance (in the L 2 sense)
to the ‘exact’ result from individual-based simulations.
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FIGURE 4.9: Comparing the selection gradient equations to individual based models in a two-compartment
chemostat model. Themean of the trait distribution is represented in black, and the environmental parameter
in dotted gray lines. The selection gradient equations (red lines) were computed for different values of α, and
represented with different shades according to their distance (in the L 2 sense) to the target result from the
individual-based model.

4.3 Bacterial growth efficiency in NEMO-PISCES

In this section, we present a first effective integration of eco-evolutionary processes in an

Earth system model. We implement the selection gradient equation in the NEMO-PISCES

model to study the evolution of bacterial growth efficicency (BGE) and examine the conse-

quences for bacterial biomass, LDOC concentrations and primary production.

Bacterial adaptation may have important consequences for the future of primary pro-

duction [48]. As the environment changes, population-wide metabolic parameters shift due

to natural selection. In return, this shift may alter the ecological state of the system, entan-

gling environmental parameters and population metabolisms in an eco-evolutionary feed-

back loop [187]. Because of the role of heterotrophic bacteria in nutrient recycling, we ex-

pect bacterial adaptation to play a role in ocean productivity and ocean ecosystem function

[269], potentially altering the balance between new and regenerated primary production.

How much and where then become key questions, that we address in this section.

4.3.1 Methods

The NEMO-PISCES model

In this study, we integrate the selection gradient equation in the NEMO-PISCES coupled

model used in Pham et al. [215], which is based on PISCESv2 [15]. We use the ORCA2-LIM

configuration of NEMO for the dynamic state of the ocean, which has a horizontal resolu-

tion of at most 2o, with a resolution increasing to 0.5o at the equator, and 30 vertical levels of

increasing depth (10m at the surface to 500m at 5000m depth).
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FIGURE 4.10: Schematic structure of the NEMO-PISCES biological model. All compartments are represented,
with explicitly modeled elements represented in the upper left corner of the compartments. Arrows represent
fluxes of biogeochemical elements, but do not aim to be comprehensive.

The biological model includes 26 compartments (Figure 4.10) and represents basic nu-

trients, two classes of phytoplankton and two of zooplankton, particulate and dissolved or-

ganic matter. Two compartments will be of particular interest, the bacterial biomass com-

partment B and the labile DOC compartment LDOC . Bacteria evolve according to the fol-

lowing dynamic equation:

∂B

∂t
= (1−δB −σB )︸ ︷︷ ︸

bacterial growth efficiency

×µB B −mB B

Km +B
B − sh ×w B B 2 − g Z (B)Z (4.9)

where δB represents the exudation rate of heterotrophic bacteria, σB the respiration rate,

µB the uptake rate, mB the linear mortality rate, Km an adjustment variable for regions of

low bacterial abundance, sh the shear rate, w B the aggregation term and g Z (B) grazing of

bacteria by zooplankton.

There are two important terms here for our eco-evolutionary analysis. First, the ratio

of resource consumed turned immediately into bacterial biomass (i.e. the bacterial growth

efficiency):
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BGE = 1−δB −σB . (4.10)

This term is at the core of our eco-evolutionary framework (see next section), along with

the maximal growth rate µB , which has the following expression:

µB =µB
max fB (T )×min

(
LB

N ,LB
PO4,LB

Fe ,
LDOC

LDOC +K LDOC

)
︸ ︷︷ ︸

nutrient limitation term

. (4.11)

Together, the BGE and maximal growth rate will allow us to compute the strength and

direction of bacterial adaptation.

The evolutionary framework

Adapting the framework from Chapter 2 calls for some adjustments. For instance, the defi-

nition of bacterial growth efficiency used in NEMO-PISCES considers a constant exudation

rate δB . Therefore, we do not work with BGE directly but with the respiration rate σB , which

we allow to vary and from which we derive BGE values. In practical terms, we keep the exu-

dation fraction δB fixed and allow the respiration fraction to vary, with the following depen-

dency from equation (4.11):

K LDOC :σB 7→
(σ0

σB

)θ
×K LDOC0. (4.12)

Here, σ0 is a reference value for respiration rate σB , for which K LDOC = K LDOC0. The

sensitivity of the trade-off is measured by the parameter θ, which could be seen as the rela-

tive cost of resource acquisition compared to biomass growth. For instance, if θ > 1 investing

twice as much in bacterial growth divides resource acquisition capacity by more than a factor

two.

The selection gradient equation

In order to implement equation (4.5) into NEMO-PISCES, we define the effective individual

growth rate g of a bacterial population with respiration rate σ in the following way:

g :σ 7→ (1−δB −σ)µB (σ)−mB B

Km +B
− sh ×w B B − g Z (B)

B
Z (4.13)

The instantaneous invasion fitness S̄ for an invading population σ′ over a resident pop-

ulation σ is given by
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S̄(σ′,σ) = g (σ′)− g (σ) (4.14)

In general, we could numerically compute the selection gradient dS̄(σ) in the following

way, assuming a small BGE variation δσ:

dS̄(σ) ≈ g (σ+δσ/2)− g (σ−δσ/2)

δσ
(4.15)

For δσ small enough compared to σ values, this approximation is acceptable.

In this simple case however, it is possible to calculate the selection gradient a priori if we

assume that LDOC limitation is the main driver of selection. Indeed, g is differentiable with

respect to σ, hence

dS̄(σ) =
(
θ · (1−δB −σ)

σ
· K LDOC (σ)

LDOC +K LDOC (σ)
−1

)
×µB (σ). (4.16)

The sign of dS̄ thus depends on the labile DOC concentration and metabolic parameters

of the bacterial cell.

Model experiments

In order to explore the impact of a variable BGE on the global geochemical cycles, we sim-

ulate different scenarios. All parameters are chosen as in Pham et al. [215], with the added

evolutionary parameters and constant iron quota as follows:

Parameter Value Unit

α 1E4 d−1 ·mmol C−1 ·m3

θ 3 -

σ0 0.6 -

K LDOC0 2E-3 mmol C ·m−3

Fe/C 15E−6 -

TABLE 4.2: Parameters for the standard run of NEMO-PISCES.

Two parameters are of major interest here: the adaptive capacity of a lineage α, and the

trade-off parameter θ. Indeed, σ0 and K LDOC0 are taken from the parametrization found

in Pham et al. [215], and are used as an evolutionary starting point.

We run the following experiments, and focus on the mean values of the surface ocean

(down to 100m depth):
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• Control run: the standard simulation, including bacterial adaptation and with initial

parameters.

• θi_s runs: sensitivity runs for the θ andαparameters, where θ = i and s ∈ {slow,standard,fast}.

Slow runs have anα parameter five times lower than in the standard run, and fast runs

have it five times higher. With this formalism, the control run would be written as

θ3_standard. We run the simulation for θ ∈ {1,2,3,4}.

• BGE_i runs: in these runs, we turn off bacterial adaptation (i.e. α = 0) and keep BGE

value constant all over the ocean at i%. We run the simulation for i ∈ {10, ...,80}.

• T0 run: to compute the effect of bacterial adaptation on the response of the microbial

loop to climate change, we run a scenario in which BGE values are taken equal to its

yearly average for each grid cell for the initial temperature distribution.

• ECO run: we increase the temperature across the ocean by 5oC and run the model

without adaptation, where BGE values match the T0 run. This run will give us the

ecophysiological response of the ecosystem to climate warming.

• ∆T run: we run the standard parameter model with increased temperature and record

BGE values to use in the eco-evolutionary scenario.

• ECO-EVO run: we run the model without adaptation, where BGE values match the

yearly average values of the∆T run. This run will give us the eco-evolutionary response

of the ecosystem to climate warming.

Each experiment is run for 20 years using the same physical forcing as in Pham et al.

[215] initialized with a homogeneous ocean, so that the surface ocean is at a quasi-steady

state. A supplementary year is then run for each experiment, with results being averaged

over each month. These data are then compared to the control run so that the influence of

eco-evolutionary processes on global biogeochemical cycles can be evaluated.

4.3.2 Results

Model validation

The modifications made to the model developed in Pham et al. [215] based on PISCES v2

[15] are marginal, and amount to having a dynamic BGE in the system instead of a fixed

one and a fixed iron quota. As such, the goal of this study is not to validate the whole model,

which has already been done [215], but to investigate the global changes that the inclusion of

eco-evolutionary processes causes. The only direct change made was on the bacterial com-

ponent, with the aim of controlling that bacterial biomass (Figure 4.11b) and LDOC concen-

tration (Figure 4.11c) are consistent with measurements [35] and previous simulations [215].
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Both follow the expected trends, but bacterial biomass seem to be slightly overestimated and

the LDOC concentration underestimated in our run.
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FIGURE 4.11: Distribution of key compartments in the control run. (a) Bacterial growth efficiency (BGE). (b)
Bacterial biomass. (c) Labile DOC concentration. (d) DOC concentration.

BGE is notably hard to deduce from in situ data such as genomic data [170], but the val-

ues, located between roughly 20% and 30% are consistent with what is found in nature [18]

and the general trends reproduce theoretical results [48]: lower values of BGE are found in

nutrient-poor and warm waters, whereas the highest values are predicted at the poles.

Sensitivity to evolutionary parameters

The scale of BGE across the ocean is largely determined by the trade-off sensitivity θ rather

than the adaptive capacity α (Figure 4.12). Higher values of trade-off sensitivity drive BGE

values down, as it becomes costlier to invest in resource acquisition. At mid-latitudes, rapid

adaptation results in stronger BGE gradients, with minimum values going lower than with

slow adaptation (Figures 4.13a-b). At high latitudes, larger variations appear when adapta-

tion is slow, but regions with the more extremes values are also regions where bacteria are

least adapted (Figure 4.13c). Across the global oceans, bacteria are fitter relative to their local

environment when adaptation capacity is high (Figures 4.13c-d).

What drives BGE variations? A comparison with fixed BGE values

We first performed a principal component analysis (PCA) on the surface system to quantify

the correlations between variables (Figure 4.14). For the six variables analyzed, most of the

variation (75.23%) can be explained by two dimensions. BGE is highly correlated to both

DOC pools, positively to LDOC and negatively to DOC. Primary production and bacterial
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FIGURE 4.12: Sensitivity of bacterial growth efficiency to adaptive capacity and trade-off parameter θ (dimen-
sionless). Adaptive capacity is twice as high (resp. low) in the rapid (resp. slow) scenario as in the standard
run. The control run is framed in red.
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FIGURE 4.13: Sensitivity of bacterial growth efficiency to the population adaptive capacity. (a-b) BGE values
for (a) slow and (b) rapid adaptation. (c-d) Fitness gradient at steady-state for (c) slow and (d) rapid adapta-
tion.
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biomass are highly correlated, probably due to the fact that environmental factors favoring

bacteria also favor phytoplankton in general.
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FIGURE 4.14: Principal Component Analysis of the surface data averaged over a year. The following quantities
are represented: bacterial growth efficiency (BGE), primary production (PP), bacterial biomass (BAC), DOC,
temperature (T) and labile DOC (LDOC).

BGE is mostly determined by LDOC concentrations (Figure 4.14 and equation 4.16) and

its adaptation corresponds to a near LDOC-minimum at the global scale (Figures 4.15c-d).

A common misconception regarding darwinian evolution is that populations ‘optimize’ a

community-level characteristic such as biomass, which is not the case here (Figure 4.15a).

In general, the best competitor is the population that exploits its environment the most, a

fact often referred to as the ‘pessimization principle’ [180]. Our model provides a striking

exemple, as bacterial adaptation leads, not to maximizing biomass (Figure 4.15a), but to

minimizing the direct resource, labile DOC (Figure 4.15c). The difference between a global

LDOC minimum and our simulations could come from the fact that in a spatially explicit

environment, local adaptation may not lead to a globally optimized population.

Impact of bacterial adaptation on productivity under ocean warming

The microbial loop is thought to process about half of all primary production [96, 142], re-

cycling part of it to fuel regenerated production at the surface [236]. In our model, primary

production depends linearly on BGE value (Figure 4.16), with a variation of BGE by 1% im-

plying an opposite variation in total primary production across the ocean of 0.025 mol/m2.

Under environmental change, bacterial adaptation could then mechanically impact ocean

productivity through the variation of BGE: this effect of adaptation would add to the eco-

physiological response of primary production, further increasing the uncertainty regarding

its future.

In order to compute the effect of bacterial adaptation on sea-surface ecosystems under

environmental change, the water temperature is increased by 5oC across the ocean. To iso-

late the macroscopic effect of bacterial adaptation, we use the yearly average of adapted BGE
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c

FIGURE 4.15: General statistics averages over the ocean with respect to BGE values. In gray, simulations of
the BGE_i runs where BGE is kept constant at its initial value across the ocean. In red, the standard simulation.
(a) Bacterial biomass. (b) Labile DOC concentration with respect to BGE. (c) Zoom on the first four data points
of LDOC concentration.
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FIGURE 4.16: Surface primary productivity averaged over the year with respect to BGE values. In gray, simu-
lations of the BGE_i runs where BGE is kept constant at its initial value across the ocean. In red, the standard
simulation.
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values to initial and increased temperatures as a forced input in the NEMO-PISCES model

without adaptation (which is already done for temperature for instance). We then compare

three runs: the T0 run, with standard temperatures and BGE values adapted to the initial

temperature, the ECO run, with increased temperatures and BGE values fixed to the values

adapted to the initial temperatures, and the ECO-EVO run, with increased temperatures and

BGE values adapted to the increased temperatures.
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FIGURE 4.17: Effect of a 5oC increase of sea-surface temperature on oceanic ecosystems in absence of bac-
terial adaptation. Mean anomaly over the course of a year for (a) primary production; (b) bacterial biomass;
(c) labile DOC concentration; (d) DOC concentration.

When bacterial adaptation is not taken into account, high latitudes and coastal areas

from the southern hemisphere become more productive when temperature increases (Fig-

ure 4.17a). This results in a global productivity increase by 1.27 billion tons of carbon per

year. Part of this captured carbon fuels bacterial biomass in the regions where productivity

increases (Figure 4.17b), leading to a decrease in labile DOC concentration (Figure 4.17c).

Global carbon stocks increase, with higher concentrations in DOC (Figure 4.17d).

These environmental changes drive bacterial adaptation. The decrease in labile DOC

concentrations leads to an increase in the resource acquisition pressure for bacterial pop-

ulation. In response, bacterial adaptation results in decreasing BGE values in most of the

biogeographical regions. The effect is spatially diverse, with strongest decreases observed in

cold regions rich in labile DOC. When integrated over the global ocean, BGE decreases by a

little over 0.2%.

The effect of this adaptation on primary production is spatially and seasonally diverse

(Figure 4.19). In accordance with the conclusions from Chapter 3, productivity tends to in-

crease across the ocean, with the largest increases occurring in already productive regions.

BGE values are constant over the course of a year, but the effects of bacterial adaptation can

be seasonal: both in the Northern Atlantic and the Eastern Pacific, primary production de-
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FIGURE 4.18: Adaptive effect of a 5oC increase of sea-surface temperature on bacterial growth efficiency.
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FIGURE 4.19: Effect of bacterial adaptation on primary production after a 5oC increase of sea-surface tem-
perature. The scale is logarithmic, with all effects under 0.01 mol/m2/year clipped to 0. On the left, seasonal
effect of bacterial adaptation on two specific regions, the Northern Atlantic and Eastern Pacific.
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creases in the summer, their most productive period. The rest of the year, productivity stays

constant in the Antarctic and increases slightly in the northern Atlantic.

Overall, bacterial adaptation results in a global primary production increase of 30.8 mil-

lion tons of carbon per year. Compared to the 1.27 billion tons of carbon in absence of bac-

terial adaptation, we can conclude that including bacterial adaptation into primary produc-

tion forecasts can alter predictions by over 2.4%, which adds to the uncertainty regarding the

future of primary production [150]. Integrated over several decades, such a deviation could

propagate and lead to drastically different predictions.

4.4 Conclusions

This study focused on a constant environment over the course of a year, where physical

properties of the ocean were forced (temperature, salinity, currents, etc.). A proxy for cli-

mate change was used in the form of a temperature increase, but only quasi-steady states

were compared. As of yet, there is no proper feedback from our system to global parame-

ters of the Earth system; in particular, there is no coupling with atmospheric models. The

next logical step would be to implement the selection gradient equation in a coupled model

taking into account future scenarios of CO2 emissions [191]. Indeed, here we focused on the

impact of a temperature increase on microbial loop function in the sea surface, but other

effects of global climate change might have similar or even stronger consequences: ocean

stratification could reduce vertical mixing and expand nutrient poor zones, which would

have important consequences on LDOC reservoirs. Changes in these reservoirs would likely

have a large impact on BGE, which might then feed back to the system globally. There are

no theoretical barriers to applying the selection gradient equation to climate scenarios, only

practical matters of computational power and fine-tuning parameters.

At its core, the selection gradient equation is derived from evolutionary game theory

[210], and is thus purely phenotypical. The trait is a quantitative characteristic of the cells,

which can be inherited with or without variation from one generation to the next, and adap-

tation is represented as the outcome of an optimization process under the constraint of a

trade-off. Despite the fact that genomic data are numerous and can be used to infer even

complex functional traits such as BGE [230, 233], many studies such as ours still model

ecosystems from a strictly phenotypical point of view. Integrating ’omics data into ecosys-

tem models has become a research priority [147, 77, 61].

Models have been successful in reproducing the ecological state of a system and even

biogeochemical fluxes [58] or displaying evidence of niche adaptation [183]. Advances such

as metabolic modeling [213, 57], and community assembly inferred from metagenomics and

metatranscriptomics data [183] allow for a robust mapping of existing genotypes to phe-

notypes. But the reason why eco-evolutionary still rely on trait-based models [239, 141]

88



4.4. Conclusions

stems from the relative simplicity of predicting variation of a functional trait compared to

the genetic variations of an individual cell: trait-based models describe ecological systems

at macroscopic scales while retaining the microscopic scale of individual variations. The

outcomes of adaptation are predicted at the level of phenotypes; we now need model that

take further steps towards delivering these predictions in ‘currencies’ that can be related to

omics data. Models such as Coles et al. (2017 Science) pave the way in this direction, and

further theoretical advances are being made [173], but much remains to be done, especially

in the face of formidable computational challenges [265].

Our method relies on populations that can be described by a one-dimensional trait-

space. While this is the case in many common evolutionary frameworks, where populations

are described with one ‘master trait’ (e.g. phytoplankton described by their size [238]), it is

not the only one. For instance, a general approach for multidimensional microbial adapta-

tion is provided by the YAS framework (for Yield-resource Acquisition-Stress tolerance) Malik

et al. [170]. Our approach focuses on the trade-off between yield and resource acquisition,

but a new dimension could be added by considering resource allocation to stress tolerance.

In sum, we have achieved the first integration of eco-evolutionary processes into Earth

system models using a trait-based model and a phenomenological model of adaptation. Ap-

plying our approach to simple, low-dimensional toy models shows that it works reasonably

well. When applied to the PISCES-NEMO ESM, we obtain credible results that could be the

basis for climate forecast. Uncertainties brought by microbial adaptation could be assessed

on a large scale, and predictions for the future of oceanic ecosystems refined. Such endeav-

ors are necessary for developing robust forecasts of the biological pump.
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Chapter 5

Bacteriophages and the microbial loop

‘Foxdie is a type of retrovirus that targets and kills

only specific people. It contains smart enzymes,

created through protein engineering. They are pro-

grammed to respond to specific genetic patterns in

the cells.’

Naomi Hunter, Metal Gear Solid (1998)

In this chapter, we focus on the biogeochemical influence viruses have on oceanic ecosys-

tems. How do lysis and the viral shunt influence microbial loop function and bacterial adap-

tation? We explain how to model bacteriophage influence on the microbial loop, and study

the particular case of the microbial loop in the aphotic zone under ocean stratification.

5.1 Viruses, players at the heart of the microbial loop

Viruses are the most abundant type of cells in the ocean, with on average 10 viral cells for

1 bacterial cell [279], even if the ratio can typically range from 1:1 to 100:1 [276]. They are

thought to cause about half of all bacterial mortality, the other half usually coming from

grazing via zooplankton [33], and as such to play an important role in biogeochemical cycles,

particularly in the microbial loop.

5.1.1 The biogeochemical importance of viral life cycles

Viruses are parasitic entities, as they need to hijack other cells to be able to reproduce. Ma-

rine viruses can be highly specialized in the type of host they target [279], and one strain

of viruses will usually only infect one type of cells. Heterotrophic bacteria are infected by a
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class of viruses called bacteriophages, whose life cycle we’ll describe in this section (Figure

5.1). We can broadly divide the life of a virus in two phases: an extracellular phase in which a

free-floating virus needs to encounter a host (i.e. a bacterial cell) in order to survive, and an

intracellular phase in which viral DNA gets reproduced by bacterial mechanisms.

Bacteriophages do not have the ability to move by themselves and rely on diffusion to

initiate contact with host cells. Contact is made in the form of protein interactions between

the phage1 and a particular location on the bacterial membrane called a receptor, where the

adsorption takes place [52]. The viral genome enters the host cell through a mix of physical

and biochemical means: the pressure gradient between a bacterial cell and the viral capside

can mechanically ‘push’ the genome in the host, while any leftover genetic material can be

‘pulled’ by specific enzymes [145, 184].

Once the genome enters the host cell, it can generally enter two phases, the lytic phase or

the lysogenic phase. During the lytic phase, bacterial function is hijacked and host DNA can

even be hydrolyzed all in order to produce more viral particles (or virions). Once a certain

virion number threshold is met, the host cell literally bursts and releases viral particles in

the environment. The lysogenic phase differs in the sense that it doesn’t necessarily end in

host death, as the viral genome is integrated in the bacterial DNA and benefits from host

reproduction. Due to certain environmental or metabolic conditions [33], the cell can go in

lytic phase after a lysogenic period.

For the remainder of the chapter, we will focus on the lytic phase of viral life cycles. In-

deed, lysis induces a literal burst of the host cell, leading to all organic material inside the

bacteria be released in the environment as DOM. This short-circuits the traditional food

web and moves carbon from unicellular organisms (e.g. heterotrophic bacteria or phyto-

plankton) directly to the DOM pool. This carbon pathway is thought to be significant, with

some estimates putting as much as 25% of all organic carbon flow moving through the viral

shunt [277]. This viral shunt could help stimulate productivity in an ecosystem by making

nutriments available that were otherwise already locked, as the DOM produced by lysis is

readily available to heterotrophic bacteria [109] and can then be transferred to phytoplank-

ton [247]. On the other hand, bacterial mortality caused by viruses could detract from the

biological pump, decreasing overall export. Indeed, the two main sources of mortality for

bacteria are grazing and lysis [109]. While grazing move carbon ‘up’ the biological pump,

leading eventually to POM sinking in the deep ocean, lysis moves carbon ‘down’ by transfer-

ring organic carbon to the DOM pool. A study using data from the Tara Oceans expedition

found that overall, carbon export in oligotrophic ocean was correlated to the presence of

specific phages [125].

By moving carbon to the DOM pool, bacteriophages are at the heart of the microbial

loop, stimulating nutrient recycling in spite of the induced mortality increase [274]. Bacte-

1Short for ‘bacteriophage’.
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FIGURE 5.1: The life-cycle of a bacteriophage. Strands of viral DNA are represented in red. (a) Contact between
a phage and a bacterial cell; (b) Infection; (c - Lytic phase) Replication; (d - Lytic phase) Lysis; (e - Lysogenic
phase) Vertical transmission; (f - Lysogenic phase) Induction of the lytic phase.

riophages have two antagonistic effects on bacterial populations, increasing both their mor-

tality rates and DOM availability. How these effects interact to influence bacterial adaptation

through selection, and how this will affect microbial loop function is still unresolved. In or-

der to address this question, we include bacteriophages in the microbial loop module from

Chapter 2 and adapt the eco-evolutionary analysis to assess the impact of phages on bacte-

rial adaptation: by comparing the bacterial ESS in three scenarios (without bacteriophages;

with bacteriophages but without the viral shunt; and with both bacteriophages and the viral

shunt) we isolate the effects of lysis and the viral shunt on the evolutionary equilibrium of

bacterial populations.

5.1.2 Integrating bacteriophages in the microbial loop module

Ecological integration of bacteriophages in the microbial loop

The first step in including bacteriophages in the eco-evolutionary microbial loop module

is to understand its ecological interaction with bacteria and DOM. In order to focus on the

sole impact of the viral shunt and increased mortality, the choice was made to consider an

instantaneous lysis upon successful infection. We do not consider the infected state of bac-

teria, which allows us to integrate bacteriophages in the microbial loop module with the
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FIGURE 5.2: Theoretical microbial loop model with bacteriophages. B, bacterial biomass; V, phage biomass;
DOM, dissolved organic matter concentration. In red, pools and fluxes added when compared to the module
developed in Chapter 2.

inclusion of only one additional viral pool (Figure 5.2). All fluxes are modelled as follow for a

general model M , in which all pools are represented in biomass concentration:

• Fluxes relating to the microbial loop in absence of viruses are the same as the ones

described in Chapter 22.

• I measures the incidence rate of contact between bacteria and viral particles. The dif-

ference in matter content between them being important for keeping track of the viral

shunt, we model contact rates in terms of individual cells, not biomass. Thus, we in-

troduce qB (resp. qV ) as the matter content of bacterial cells (resp. bacteriophages):

that way, B/qB represents the number of bacterial cells and V /qV the number of viral

cells. We have:

I =ψ · B

qB
· V

qV
(5.1)

• Each contact does not automatically end in an infection and subsequent (immediate)

lysis. Indeed, we take into account inefficient infections [273], with interaction be-

tween a bacterial cell with a viral particle having a probability π to lead to an actual

infection. Effective infection rate will thus be π× I .

• Successful infections result in viral bursts of sizeβ, and is measured in number of cells.

Unsuccessful infections lead to the decay of the bacteriophage (the bacterial cell re-

mains unchanged).

• All excess matter from lysis (the viral shunt V S) moves to the DOM pool. We have:

2Note that for instance, if viruses specific to phytoplankton are present in the model, the viral shunt from

this taxonomy will show in the input term In(M ).

94



5.1. Viruses, players at the heart of the microbial loop

V S = (qB −βqV ) ·πI︸ ︷︷ ︸
excess nutrient released from lysis

(5.2)

• µV denote the mortality rate of phages. All matter derived from viral death exits the

system3.

The dynamical evolution of the system can then be described by the following system of

ordinary differential equations:



dDOM

dt
= In(M )+V S −UB

dB

dt
=ωUB −W (M )−qB ·πI

dV

dt
= qV ·β πI −qV · I −µV V

(5.3)

Strictly speaking, the integration of bacteriophages did not call for modifying the micro-

bial loop module, and this general integration was done for the purpose of clarity. Indeed,

mortality induced by viruses can be integrated to the general waste term W (M ), with the

individual bacterial waste term w(ω,M ) expressed as:

w(ω,M ) = π ·ψ · V

qV︸ ︷︷ ︸
mortality induced by lysis

+ other bacterial waste terms (5.4)

Then, the viral shunt V S can be integrated in the input term In(M ) to complete the

integration in the module.

Evolutionary integration of bacteriophages in the microbial loop

In addition to influencing the ecosystem’s population dynamics, bacteriophages impact bac-

terial adaptation. Here we discuss the implication of including bacteriophages on the trait

and trade-offs defined in Chapter 2.

Phage infection is a major source of stress for bacterial populations, and they may in-

vest part of their energy in defending themselves against infection. Bacteria have numerous

means of stopping an infection, as reviewed in Azam and Tanji [16]. They can inhibit the ad-

sorption by changing the receptor, limit the viral DNA injection by encoding specific genes,

break viral DNA once injected or even stop its replication. All of those mechanisms can be

3As with bacterial mortality in Chapter 2, this exit can loop back as an input in the general model M .
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summarized in our model by the probability of successful infection π, and therefore we can

define π to be a function of our trait ω, the BGE, in order to reflect those mechanisms:

π :ω 7→π(ω). (5.5)

Here, the probability of a successful infection should decrease with the increase in respi-

ration (1−ω), which is taken as a proxy of energy expenditure of the bacterial cell. π should

therefore be an increasing function of ω. In this chapter, we use the following expression

for the probability π, with π0 being the maximum infection probability and θS the ‘stress

tolerance’ trade-off constant:

π(ω) =ωθS ×π0. (5.6)

Alternate model of trait variation

A note should be made here that the choice to keep only one trait in this study is not the only

possible one. This ‘mother trait’ approach (explained in details in Chapter 2) can be replaced

by a direct application of Malik et al. [170] and its ‘YAS’ framework. If we directly apply the

YAS framework, a trade-off between resource acquisition and stress tolerance may also exist,

which is not the case here. Indeed, when yield (BGE) decreases, both resource acquisition

and stress tolerance increase and vice-versa as respiration rates increase.

In order to introduce this second trade-off, the trait-space needs to be two-dimensional,

with three non-independent traits y, a, s each representing the investment of resource con-

sumed into respectively yield, resource acquisition and stress tolerance. In this framework,

the different trade-offs would be (with θA the resource acquisition trade-off constant):

ω= y (5.7)

KB (a) = 1

aθA
×K 0

B (5.8)

π(s) = (1− s)θS ×π0 (5.9)

y +a + s = 1. (5.10)

This framework could be interesting for further studies taking phage-host coevolution,

but for the purpose of this thesis we chose to follow the most straightforward approach in

the study of biogeochemical cycles, and keep the trait unidimensional for potential future

integration in ESMs.
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5.1.3 The NB-V model in the aphotic zone

In this chapter, we compute the effect of bacteriophages on the microbial loop itself by fo-

cusing on the system in the aphotic zone, where the external DOM input is constant at a

given depth [175]. This allows us to see the impact of bacteriophages on the system with

minimal parameters while still modeling a relevant ecosystem.

We implement the microbial loop module in the microbial loop model of the aphotic

zone (NB) with viruses (V) to develop the MNB-V model. The viral shunt is entirely redirected

to the DOM pool (Figure 5.3).

DOM

B

In

UB

BRW

R

(1-ε)W

εW V πI

FIGURE 5.3: Model MNB-V of the microbial loop in the aphotic zone. B, bacterial biomass; V, phage biomass;
DOM, dissolved organic matter concentration. In red, pools and fluxes added when compared to the module
developed in the case-study from Chapter 2.

All fluxes can be found in the case-study from Chapter 2, with the added viral fluxes de-

scribed in this chapter. It should be noted that the general waste product W now takes viral

death into account, and the waste from contact between phage and bacteria:

W = µB B +µV V︸ ︷︷ ︸
cell mortality and egestion

+ qV · I︸ ︷︷ ︸
waste of viral capside after contact

(5.11)

As all other fluxes are identical to the previous case-study, we can derive the following

system of differential equations to describe the dynamics of the system:
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dDOM

dt
= R +ϵ ·W +V S −UB

dB

dt
=ωUB −µB B −qB ·πI

dV

dt
= qV ·β πI −qV · I −µV V

(5.12)

Ecological equilibrium

In order to compute the effect of phages and the viral shunt on the system, it is useful to

compare the system in presence and in absence of viruses. For reference, we recall the equi-

librium values of the MNB model without viruses:

B̄NB = ωR

(1−ωϵ) ·µB
(5.13)

DOM NB = µB

ωλB −µB
·KB (5.14)

Let’s now assume that an equilibrium is possible in presence of viruses. We can derive the

value of the bacterial biomass B̄ at steady-state through the dynamics of phages. We find:

B̄ = qB · µV

(πβ−1) ·ψ . (5.15)

This value only depends on viral parameters, and no longer on resource parameters. The

inclusion of viruses shifts the system from a ‘bottom-up’ state (where the limitation for pop-

ulation growth is nutrient limitation) to a ‘top-down’ state (where the limitation for pop-

ulation growth is mortality and predation). A consequence of this shift is that an equilib-

rium with viruses may not be possible if the limitation induced by DOM uptake is stronger

than the phage-induced limitation. We can therefore define the maximum bacterial biomass

B̄MAX = B̄NB, and state that an equilibrium with viruses will only be possible if B̄ < B̄MAX.

In that case, a little algebra yields the following value for viral equilibrium:

V̄ = (1−ωϵ) ·µB(
(1−ω) · qB

qV
+ω · (1−ϵ)β

)
· π
πβ−1 ·µV

(B̄MAX − B̄). (5.16)

V̄ > 0 if and only if B̄ < B̄MAX. For the remainder of the chapter, we assume that the

parameters are chosen such as if an equilibrium exists, it will be a stable one and no cycles
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appear4. This leads to the following expression for DOM concentration:

DOM = R +ϵW̄ +V S

λB B̄ − (R +ϵW̄ +V S)
·KB (5.17)

Evolutionary equilibrium

By substituting the appropriate expressions of equation (2.14) and tailor it to the MNB-V

model, we find the following selection gradient:

dS(ω) =
µB +π(ω)ψ V̄

qV

ω

−θA · ω

1−ω · K (ω)

K (ω)+DOM
·λB

DOM

K (ω)+DOM

−θS · π(ω)

ω
·ψ V̄

qV
.

(5.18)

5.2 Bacteriophage influence in a constant environment

Adding a viral compartment to the aphotic zone model changes the steady-state concentra-

tions and fluxes, but also the ESS value for BGE for a given environment. In this section,

we assess the impact of bacteriophages on the evolutionary stable strategy and subsequent

effects on microbial loop function.

5.2.1 Shifting the evolutionary stable strategy

The inclusion of viruses shifts the evolutionary equilibrium from the MNB model, which af-

fects the whole system. Expressing the selection gradient as a function of the selection gradi-

ent dSNB(ω) in absence of viruses allows us to compare the two evolutionary stable strategies:

4Numerical validation of the stability of the equilibrium will be performed when appropriate.
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dS(ω) =dSNB(ω)

+θA · ω

1−ωKB (ω) ·λB

(
DOM NB

(KB (ω)+DOM NB)2
− DOM

(KB (ω)+DOM)2

)

+ (1−θS)
π(ω)

ω
·ψ V̄

qV
.

(5.19)

To assess how the new evolutionary equilibrium ω∗ compares to the evolutionary equi-

librium ω∗
NB in absence of phages, we compute the value of dS(ω∗

NB): this value is positive if

and only if ω∗ >ω∗
NB. We find:

dS(ω∗
NB) = θA · ω∗

NB

1−ω∗
NB

KB (ω∗
NB) ·λB

(
DOM NB

(KB (ω∗
NB)+DOM NB)2

− DOM

(KB (ω∗
NB)+DOM)2

)

+ (1−θS)
π(ω∗

NB)

ω∗
NB

·ψ V̄

qV
.

(5.20)

The two terms in this expression correspond to the effect of DOM variation in presence

of bacteriophages, and to the effect of induced mortality by lysis itself. The former could be

seen as the effect of the resource acquisition pressure Ap and the latter of the stress tolerance

pressure Sp . Let us first focus on the stress tolerance pressure:

Sp = (1−θS)
π(ω∗

NB)

ω∗
NB

·ψ V̄

qV
. (5.21)

The stress tolerance pressure is positive if and only if θS < 1. Since θS is the stress toler-

ance trade-off sensitivity constant, its value with respect to 1 informs us on which function

is more metabolically ‘expensive’. For θS < 1, every marginal investment in stress tolerance

measured by a decreasing yield ω will decrease the probability of successful infection π(ω)

by a smaller amount: increasing bacterial defence against phages costs more than increasing

yield. In this case, the increase in mortality due to viral particles will be handled more effec-

tively by increasing yield than by increasing stress tolerance: the lytic pressure is positive,

and drives BGE values up.

We now focus on the resource acquisition pressure Ap :

Ap = θA · ω∗
NB

1−ω∗
NB

KB (ω∗
NB) ·λB

(
DOM NB

(KB (ω∗
NB)+DOM NB)2

− DOM

(KB (ω∗
NB)+DOM)2

)
. (5.22)

100



5.2. Bacteriophage influence in a constant environment

The sign of the resource acquisition pressure depends on the respective values of the

following function f applied to DOM concentration equilibrium values:

f : x 7→ x

(KB (ω∗
NB)+x)2

. (5.23)

This function is increasing on [0,KB (ω∗
NB)] and decreasing afterwards. Two broad cases

can be distinguished: DOM-poor environments, in which DOM concentrations with and

without viruses are below the threshold value KB (ω∗
NB); and DOM-rich environments, where

both concentrations are above. Fringe cases in which concentrations are on either side of the

threshold value are not included, as in those cases DOM ≈ DOM NB. Finally, the presence of

viruses increases the equilibrium concentration of DOM for a given value of BGE ω. The

inclusion of viruses shifts the structure of the system from a ‘bottom-up’ limited to a ‘top-

down’ limited system, which by relieving pressure on the resource mechanically increases

its equilibrium concentration. Therefore, we can conclude that DOM NB < DOM .

When faced with stress-induced mortality, individuals have two potential responses: they

either increase their efficiency in using the resource they gather (increasing yield), or they

increase their capacity to consume resources (increasing resource acquisition). The same

increase in resource concentration will result in a higher gain in individual growth rate in

nutrient-poor environment than in nutrient-rich environments (Figure 5.4). In the former,

investing in resource acquisition will therefore be more advantageous than investing in yield

inducing a BGE decrease, and vice-versa in the latter.

In
di

vi
du

al
 g

ro
w

th
 ra

te

DOM concentration

Larger increase in 
nutrient-poor environments

Smaller increase in 
nutrient-rich environments

FIGURE 5.4: Effect of an increase in DOM concentration on individual growth rate in nutrient-poor and
nutrient-rich environments. Individual growth rate follows a type-I response (Monod function) to DOM con-
centration. In red, the same increase of equilibrium DOM concentration due to bacteriophages in poor and
and rich environments.

To isolate the effect of the viral shunt on the system, we focus on the ecological equi-

librium state, particularly equation (5.17). The effect of the viral shunt is to increase DOM

concentration at its steady-state, which increases the difference between DOM and DOM NB:
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all other things being equal, the viral shunt will intensify the effect of viruses on the resource

acquisition pressure – increasing BGE in rich environments and decreasing it in poor ones.

To summarize, the effect of bacteriophages on the evolutionary stable strategy is twofold.

First, by increasing bacterial mortality, phages induce BGE adaptation by either increasing

yield or stress tolerance, depending on their relative costs. Second, by increasing DOM avail-

ability to bacteria, phages can induce an increase in BGE values in DOM-rich environments,

and a decrease in DOM-poor ones, a phenomenon intensified by the viral shunt.

5.2.2 Phages increase DOM recycling

In order to assess the role of each parameter on DOM recycling in presence of bacterio-

phages, we perform a sensitivity analysis of the system. The DOM input was set to represent

the remineralization rate of POM at a depth of 100m according to the Martin curve [175] with

a flux F100 = 5 molC/m2/year and a b parameter such as b = 1. A set of baseline parameters

was derived from Bendtsen et al. [25] and adjusted for the results to represent a credible

water-column ecosystem (Table 5.1). We then perform 1,000 simulations following a Latin

hypercube where each parameter is varied by a maximum of ±20%.

Parameter Baseline value Unit

T 15 oC

R 0.1 mmol·m−3·day−1

λ0
B 1 day−1

K 0
B 1 mmol·m−3

θA 2

µ 0.01 day−1

ϵ 0.5

E A 0.6 eV

qB 1 q

qV 5E-3 q

β 70 cells

θS 1

ψ 0.2 q ·(mmol·m−3)−1·day−1

TABLE 5.1: Baseline simulation parameters of the MNB-V model.

We first compare key outputs in their steady states under three different scenarios: one

without phages (the MNB model), one with phages but where the viral shunt exits the system

instead of returning to the DOM pool, and the complete MNB-V model with viral shunt.

Most of the effect of phages on the equilibrium state of the system (Figure 5.5) comes

from the inclusion of phages rather than the viral shunt, even a slight positive effect can be
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a b c

FIGURE 5.5: Influence of bacteriophages and the viral shunt on equilibrium concentrations. The median
values of the distributions are represented as black dots, connected to clearly show the trend of the inclusion
of different subsystems. The position of the dotted line relative to the solid lines informs us on the relative
strength of viral inclusion and viral shunt. VS, viral shunt; (a) DOM concentration; (b) Bacterial biomass; (c)
Viral biomass.

seen on DOM concentration and viral biomass. The added input of DOM doesn’t compare

to the systemic shift from a ‘bottom-up’ to ‘top-down’ limited system induced by the sole

inclusion of a viral compartment.

a cb

FIGURE 5.6: Influence of bacteriophages and the viral shunt key microbial loop outputs. (a) bacterial growth
efficiency; (b) remineralization ratio; (c) DOM turnover rate. The median values of the distributions are rep-
resented as black dots, connected to clearly show the trend of the inclusion of different subsystems. The
position of the dotted line relative to the solid lines informs us on the relative strength of viral inclusion and
viral shunt. VS, viral shunt.

Just as predicted in the previous section, including viruses to the microbial loop in a

DOM-poor environment induced a BGE decrease (Figure 5.6a). Once again, the effect of

the viral shunt is too weak to produce a significant result.

Both the inclusion of a viral compartment and the viral shunt have a strong effect on the

remineralization ratio (Figure 5.6b). The effect of the viral shunt is straightforward to explain:

all excess matter from the lysis stays in the system and has a chance to end up respired.
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On the other hand, we could expect that the inclusion of a viral compartment without the

viral shunt would decrease the remineralization ratio by killing bacteria faster and keeping

the community biomass down. The increase in remineralization ratio comes from adaptive

mechanisms, not ecological ones: phages drive BGE values down (Figure 5.6a), and as such

increase the individual respiration rate enough to make up for all other factors.

Bacteriophages tend to slow down DOM turnover (Figure 5.6c). By increasing the size of

the DOM pool and limiting the growth of bacteria, phages decrease the uptake pressure on

the environment’s resource. The viral shunt has very little effect on DOM turnover however.

To summarize, for most state variables and functions of the microbial loop, the inclu-

sion of a viral compartment is far more important than the viral shunt itself. By shifting the

limitation from ‘bottom-up’ to ‘top-down’, bacteriophages limit bacterial growth, increase

the pressure for stress tolerance and resource acquisition and overall induce faster cycling

of the nutrients through the microbial loop. This is especially true of the remineralization

ratio, which is even further increased by the viral shunt. Faster cycling of nutrients imply a

stronger recycling pathway, but how does this pathway vary under climate change?

5.3 Bacteriophage influence under ocean stratification

In this section, we compute the eco-evolutionary response of the microbial loop to ocean

stratification, which is represented by a 20% decrease in external DOM input R and analyze

the potential extinction of phages due to bacterial adaptation.

5.3.1 Eco-evolutionary response of the system

In the absence of viruses, ocean stratification has little effect on bacterial adaptation (Figure

5.7 and section 2.3). The inclusion of bacteriophages not only changes the initial value of

BGE, it also influences its response to ocean stratification: BGE increases by approximatively

1% (Figure 5.7). This will impact nutrient remineralization (Figure 5.8) and DOM turnover

(Figure 5.9).

The ecophysiological response of the remineralization ratio is sensitive to ocean strati-

fication with opposite effects depending on the viral shunt (Figure 5.8). In the absence of

the viral shunt, an increase in ocean stratification stimulates the remineralization. Reduced

DOM input implies a lower viral biomass: the main source of bacterial mortality decreases,

which mechanically increases the relative importance of respiration compared to mortality.

When the viral shunt is active, the decrease in viral mortality represents a net loss of potential

recycled DOM which could eventually be respired, leading to the remineralization ratio.

The interaction between bacterial adaptation and the viral shunt is also quite complex.
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FIGURE 5.7: Influence of phages on bacterial adaptation to ocean stratification. The top row represents
the distribution of values in the initial environment (Figure 5.6a), and the bottom row the ecophysiological
response of the system (in green), the effect of bacterial adaptation (in blue) and the total eco-evolutionary
response of the system. VS, viral shunt.
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FIGURE 5.8: Influence of phages on remineralization ratio variations ocean stratification. The top row repre-
sents the distribution of values in the initial environment (Figure 5.6b), and the bottom row the ecophysiologi-
cal response of the system (in green), the effect of bacterial adaptation (in blue) and the total eco-evolutionary
response of the system. VS, viral shunt.

105



Chapter 5. Bacteriophages and the microbial loop

0

1

2

3

In
iti

al
 d

ist
rib

ut
io

n 
of

 
 D

OM
 tu

rn
ov

er
 (d

ay
s)

No phages No VS With VS
0.1

0.0

0.1

0.2

Ec
o-

ev
ol

ut
io

na
ry

 
 e

ffe
ct

s o
f s

tra
tif

ica
tio

n

FIGURE 5.9: Influence of phages on DOM turnover variations to ocean stratification. The top row represents
the distribution of values in the initial environment (Figure 5.6c), and the bottom row the ecophysiological
response of the system (in green), the effect of bacterial adaptation (in blue) and the total eco-evolutionary
response of the system. VS, viral shunt.

Indeed, the increase in BGE is equal in presence and absence of the viral shunt, but the effect

of this increase is significantly different in both cases when it comes to the remineralization

ratio. Without the viral shunt, an increase in BGE results in a decrease of the remineraliza-

tion ratio, as the respiration rate decreases. But with the viral shunt, this increase can in

some cases stimulate remineralization: looking at the correlation between this effect and

the model parameters, we find that it is most positively correlated to the trade-off constant

θS (r = 0.60) and negatively correlated to burst size β (r = −0.55). The model is sensitive to

the relative cost of stress tolerance compared to yield: when stress tolerance costs more than

yield (θS < 1), the effect of a BGE increase will weaken the defences of bacteria to phages

relatively more and increase infection rates. Since in the presence of the viral shunt, lysis

actually stimulates remineralization as we’ve seen, remineralization ratio increases. For the

same reasons, a high viral burst detracts from the viral shunt, as less matter gets redirected

to the DOM pool, leading to a decrease in overall remineralization.

An interesting feature that emerges is that the total eco-evolutionary effect of ocean strat-

ification is equivalent in both the presence and absence of viral shunt, but nothing indicates

that this is a structural result of the model, and may rely on this specific parametrization.

Without of bacterial adaptation, DOM turnover decreases when stratification increases:

stratification implies a decrease in DOM concentration (equation 5.17), which results in

faster turnover. The effect is reversed by bacterial adaptation, because increasing BGE de-

creases the uptake rate, which results in an overall increase in DOM turnover.
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5.3.2 Can ocean stratification lead to phage extinction?

Coexistence between bacteria and phages is possible only under the condition expressed by

equations (5.13) and (5.15):

B̄ < B̄MAX (5.24)

In the case of ocean stratification, two parameters shift, DOM input R and BGE value ω,

which may result in bacterial biomass to cross the threshold and lead to phage extinction.

In the absence of bacterial adaptation, ocean stratification leads to a decrease of B MAX.

If we call ω0 the initial BGE value (i.e. before ocean stratification), we find that phages go

extinct if the DOM input decreases below the threshold nutrient input RR defined by:

REXT = qB · µV ·µB · (1−ω0)

ω0(π(ω0)β−1) ·ψ . (5.25)

We now assume that the decrease in R is not enough to drive phages to extinction. From

equations (5.13) and (5.15), we find that B̄MAX is an increasing function ofωwhereas B̄ is a de-

creasing function ofω forω>ωINF such as π(ωINF)β= 1. Let us prove that there exists a mini-

mum valueωEXT below which phages can’t thrive, meaning such as B̄MAX(ωEXT) = B̄(ωEXT). On

one hand, we have

lim
ω→ω+

INF

B̄(ω) =+∞. (5.26)

On the other hand, B̄MAX(ωINF) is bounded. By our initial assumption of a system with bacteria-

phages coexistence, we have B̄(ω0) < B̄MAX(ω0). By virtue of the intermediate value theorem,

we conclude that there exists a value ω such as B̄(ω) = B̄MAX(ω), which we call ωEXT (Figure

5.10).

The value of ωEXT is given by the crossing point of B̄MAX and B̄ :

ωEXT ·R

(1−ωEXT ·ϵ) ·µB
= qB · µV

(π(ωEXT)β−1) ·ψ . (5.27)

Computing the sign of selection gradient dS(ω) for ω=ωEXT indicates the position of ω∗

relative to ωEXT, as dS(ωEXT) < 0 if and only if ωEXT < ω∗. For ω = ωEXT, DOM = DOM NB and

V̄ = 0. This leads to the following relationship:

dS(ωEXT) = dSNB(ωEXT). (5.28)
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FIGURE 5.10: Existence of a threshold value ωEXT below which bacteriophages go to extinction. B̄MAX, bacte-
rial biomass in absence of phages; B̄ , bacterial biomass in presence of phages; ωINF, lower bound of the valid
domain in presence of phages; ω0, initial value of the system for which bacteria and phages coexist.

Equation (5.28) indicates that both ω∗ and ω∗
NB are on the same side of ωEXT, so that

ω∗ <ωEXT if and only if ω∗
NB <ωEXT. In other words, bacterial adaptation may lead bacterio-

phages to extinction if the evolutionary equilibrium lies in the phage extinction zone. The

ESS ω∗
NB in absence of bacteriophages does not depend on DOM input R (equation 2.24),

whereas ωEXT increases with a DOM input decrease (equation 5.27): there could be a point

at which ωEXT increases past the constant ω∗
NB, which would drive phages to extinction. Bac-

terial adaptation in response to ocean stratification could drive a population of specialized

phages to extinction.

+1%

FIGURE 5.11: Distribution of the extinction threshold relative to bacterial growth efficiency and eco-
evolutionary effect of ocean stratification. The red arrow represents the median eco-evolutionary effect
of a 20% decrease in external DOM input due to ocean stratification.

With the considered parametrization, the extinction threshold is still not reached after

the DOM input decrease, but the gap narrows (Figure 5.11), and deep in the water column in

oligotrophic regions, this threshold could be passed. Based on the analysis from this section,

phage extinction would lead to lower nutrient remineralization, faster DOM turnover and

higher bacterial biomass concentration across the oceans.
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5.4 Conclusion and perspectives

This chapter focused on the integration of bacteriophages to the microbial loop, and how

the viral shunt influences its function. Its effect on the system in the aphotic zone was ex-

tensively analyzed, and in order to complete the study a closer look needs to be taken on

sea-surface ecosystems. This work was already pursued in Weitz et al. [274] for the integra-

tion of phages in a constant environment, and the study from this chapter will allow us to

extrapolate its future under a changing ocean.

In their study, Weitz et al. [274] develop a model close to the NPZ-B model discussed in

this thesis (see Chapter 3), with some notable differences: there are two classes of phyto-

plankton (eukaryotes and cyanobacteria) and only one class of dissolved inorganic nitrogen

(whereas we made the distinction between nitrate and ammonium to track new and regen-

erated production). Each unicellular organism has a specific class of viruses attached, and

the viral shunt drives nitrogen from all unicellular pool to the dissolved organic nitrogen

pool. While the system exhibited the shift from a ‘bottom-up’ to a ‘top-down’ limitation with

the decrease in zooplankton biomass and an increase in organic and inorganic nutrients that

was expected, the inclusion of viruses proved to actually increase total biomass of unicellular

organisms. This change in ecosystem structure came with a change in ecosystem function,

with increased remineralization (as was the case in the MNB-V model) and subsequent in-

creased primary production. The decrease in trophic transfer (and as such, in overall export)

shows that this productivity increase comes from increased regenerated production.

The shift in evolutionary stable strategy (section 5.2.1) would also take place in a sea-

surface ecosystem model: BGE values would increase in nutrient-rich regions and decrease

in nutrient-poor regions compared to a system without phages. When bacteriophages are

not taken into account, BGE values are already positively correlated to the richness of the

environment (Chapter 3), so the inclusion of a viral compartment would increase the bio-

geographical differences in bacterial growth efficiencies. We expect regeneration to increase

in productive zones, driving primary production up.

Under the surface, our model predicts that ocean stratification could lead to the extinc-

tion specialized bacteriophages. However unlikely, such a scenario would be a ‘tipping el-

ement’ for ocean ecosystems [159]. Tipping elements represent Earth subsystems that are

continental or subcontinental in scale and for which small variations in the environment

could result in dramatic shifts in function. A paramount example of a tipping element in the

Earth system is the melting of the polar caps: if the ice sheets at the poles melt over a cer-

tain point, the albedo of the Earth would change significantly leading to even more warm-

ing and no possibility to go back to full covering of the poles [253]. Considering the signifi-

cance of bacteriophages to the marine food web, the remodeling of ecological communities

by adaptation-driven phage extinction might shift biogeochemical cycles in the ocean to a

new state. Bacteriophage extinction due to bacterial adaptation could lead to lower DOM
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regeneration and primary production [274] and increased bacterial biomass, reinforcing the

‘sink’ aspect of the microbial loop [96]. Nonetheless, the prediction of an ecological shift in

viral abundance and diversity below some critical depth underlines the limits of our model:

data shows that viral counts increase relative to bacteria deep in the water-column in oxygen

minimum zones [133], showing the importance of mechanisms not captured by our model.

In order to test the predictions and results of this chapter, an implementation in an ESM

such as the NEMO-PISCES model [15] would be the next logical step.

In addition to exerting a strong biogeochemical control on the microbial loop, bacterio-

phages also impact the adaptation of heterotrophic bacteria by altering their metabolism

[34], increasing their mutation rate [208] or promoting genetic innovation through integra-

tion [200] (more thorough reviews can be found in Breitbart et al. [33] and Chevallereau et al.

[52]). Transduction, a phage-mediated horizontal-gene transfer mechanism is of particular

interest for our thesis. It is thought to have permitted the apparition of entire metabolic path-

ways [185], and allows the rapid spread of innovation in general [128]). In the next chapter,

we shall thus focus on the impact of transduction on bacterial adaptation.
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Chapter 6

Transduction, a viral mechanism

influencing bacterial adaptation
With Sylvie Méléard and Régis Ferrière, in preprint [50]. Presented at Virtual Evolution 2021 [51].

‘A fly got into the transmitter pod with me that first

time, when I was alone. The computer got con-

fused - there weren’t supposed to be two separate

genetic patterns - and it decided to, uh, splice us

together.’

Seth Brundle, The Fly (1986)

In addition to their ecological and biogeochemical importance, bacteriophages influ-

ence bacterial adaptation through genetic mechanisms such as transduction. Transduction

is a horizontal gene transfer mechanism (HGT) in which phage particles transfer genetic ma-

terial from one bacterial cell to another. Depending on the allele transferred (whether it is

beneficial or deleterious), transduction may accelerate or hinder bacterial adaptation. In this

chapter, we resolve the conflicting effects of transduction on bacterial adaptation in a simple

eco-evolutionary model for large populations characterized by a quantitative (resource-use)

trait with a single evolutionary optimum.

6.1 Introduction

Bacteria can transfer genetic material ‘vertically’ to daughter cells as well as ‘horizontally’ be-

tween cells. The process of horizontal gene transfer allows bacterial species to successfully

conquer and adapt to new ecological niches [68, 202, 153] by driving the rapid spread of evo-

lutionary innovation [128, 131]. Well-studied mechanisms of horizontal gene transfer (HGT)
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between bacterial cells are transformation, conjugation, and transduction. Of the three,

transduction by bacterial viruses, or phages, is generally regarded as the most important

[46]. Transduction is the process whereby host DNA is packaged into phage particles which

then deliver the bacterial DNA as they infect other cells. Through transduction, viruses can

influence the genotypic composition of host populations, hence potentially their hosts’ evo-

lution. For example, phages are notorious for their role in the transfer of pathogenicity is-

lands and antibiotic resistance genes.

While transduction may contribute substantially to the evolution of major ecological in-

novations in prokaryotes, very little is known about the role that transduction plays in the

adaptation of bacterial populations to small or gradual, quantitative, rather than large, qual-

itative, changes in their environment [223, 257]. The conventional view is that, as a mech-

anism that facilitates the spread of genetic elements among host cells, transduction may

accelerate bacterial adaptation to a changing environment [7]. But if bacteria can acquire

advantageous mutations through transduction, they may also receive deleterious ones [224,

27]. In addition, if a high rate of transduction comes at the cost of a high rate of viral in-

fection, the adaptive benefit of spreading beneficial mutations may be further eroded by

the overall mortality cost of infection. Our goal here is to resolve these conflicting effects

of transduction on bacterial adaptation by developing and analysing a simple mathematical

model.

Different mechanisms of transduction have been described, depending on the phage life

cycle and the region of host DNA that can be transferred [101, 66]. Specialized transduc-

tion and lateral transduction involve temperate phages, i.e. phages that can enter either the

lytic or lysogenic life cycles. Specialized transduction occurs when a prophage (phage in

lysogeny) excises incorrectly from the host bacterial genome and ends up packaging some

of the flanking regions of host DNA. The recently described lateral transduction [46] also in-

volves temperate phages, whose late excision and in situ replication leads to highly efficient

packaging of host DNA over several hundred kilobases downstream of the integration site.

Finally, generalized transduction can involve phages that are temperate as well as virulent,

i.e. that can only replicate via the lytic cycle. In generalized transduction, phages randomly

package host DNA instead of their own and thus can transfer any fragment of the bacterial

genome. Phages packed with host DNA, or transducing particles, are released during lysis,

together with functional virions. Transducing particles have the ability to adsorb to bacterial

surface receptors and inject their DNA. However, as they lack viral genes, transducing par-

ticles cannot trigger lysis. Instead, the injected bacterial DNA might be integrated into the

recipient cell’s genome by recombination. In this study, we focus on generalized transduc-

tion by virulent phages, which allows us to keep the mathematical framework simple and

tractable.

In our model the phenotype of asexually reproducing bacterial cells is characterized by a

quantitative trait which measures the cell’s ability to acquire a single resource. We use a sim-
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ple genotype-phenotype map based on an infinite-site, infinite allele model in which mu-

tations occur upon cell division and cause small, random phenotypic change. The mutated

DNA of a mutant cell may be transferred to recipient cells and integrated in their genome

via generalized transduction due to a non-evolving virulent phage. To model selection on

bacterial trait variation, we take an eco-evolutionary approach in which the intensity and

direction of selection is not given a priori [78]. Rather, selection results from the ecological

process of cells competing for their resources, with competition being more intense among

cells that are phenotypically more similar.

Starting with an individual-level model of bacteria competing among themselves and

susceptible to infection by a virulent phage, we extend the model to track the effect of gen-

eralized transduction on the cells’ genotype and phenotype. Assuming the existence of a

single trait value that maximizes individual resource acquisition (i.e., a single evolutionary

optimum), the adaptation process unfolds as the bacterial population moves in its one-

dimensional phenotypic space. By assuming that the process is mutation-limited, we derive

the general equation driving the adaptive trait dynamics. We combine the mathematical

analysis of this equation with numerical simulations of the individual-based process to re-

solve the effect of generalized transduction on (i) the speed of adaptation away from the evo-

lutionary optimum, (ii) the dynamics of adaptation near the optimum, (iii) the maintenance

of phenotypic diversity that may result from disruptive selection around the optimum.

6.2 A mathematical model for transduction

Our model of generalized transduction is summarized in Figure 6.1. During the reproduc-

tion and encapsulation of the viral genome, DNA ‘mispackaging’ may occur resulting in viral

particles that contain part of the host genome instead of viral DNA [257]. These viral par-

ticles, that we call Gene Transducing Particles, or GTP, may no longer cause the lysis of the

cells they infect. Instead, they pass genetic material from the previous host on to the receiv-

ing cell, where it may be integrated in the genome by recombination. As a consequence, the

phenotype of the receiving cell, and its offspring lineage, may be altered (Figure 6.1a).

6.2.1 Individual-level model of infection and transduction

To describe the genotypic and phenotypic effects of transduction, we focus on a quantitative

character, or trait, a, and introduce a simple model of the genotype-phenotype map. We

make the following assumptions:

1. The trait is under the control of many loci of small, additive effects.
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FIGURE 6.1: Transduction moves mutant alleles among individuals and create new genotypes. Infection by
a lytic virus (a) causes a viral burst. Some of the viral particles released from the burst are gene transduc-
ing particles (b) that may transfer a mutated allele from the previous host to a new host (c). With a given
probability of transduction, the mutated allele is integrated by recombination into the new host’s genome (d).
Mutations that occur in different lineages are vertically inherited (e). When a transduction event occurs, a new
lineage is created (e, dashed red lines).

2. We use the principle of an infinite site model, so that no two mutations will impact the

same locus.

3. Alleles at the different loci can be moved by transduction. Transduced DNA is inte-

grated by non-homologous end joining [221], i.e. the new DNA fragment is added to

the host genome, and does not replace the resident allele.

4. We assume no dosage effect, meaning that the number of occurrences of an allele does

not influence the level of expression of the gene.

5. Mispackaging of host DNA in a new viral particle (GTP), the delivery of the previous

host’s DNA by the GTP, and the integration of transferred genetic material into the

newly infected host’s genome, are stochastic events. Each event occurs with a certain

probability.

6. The integration step of the transduction process is more likely if the phenotypes are

more similar. The reason is that the underlying genotypic difference between more

similar phenotypes is likely smaller, which may facilitate recombination.

Per assumptions 3 and 4, when a cell receives a copy of a mutation it already carries, two

copies of the same mutated sequence will occur in the genotype, but assumption 4 implies

that the phenotype will not be altered by the second copy of the mutation. Only the presence

or absence of an allele influences the cell’s phenotype. The genotype-phenotype map can
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thus be described as follows. By n we denote the number of mutations that have occurred

in a population at time t . Since each mutation occurs on a different site (assumption 1), we

can define Mi ⊆ {1, ...,n} the subset of mutations that individual i carries. The phenotypic

effect of each mutation (indexed by m, varying from 1 to n) is a small perturbation ϵm . As a

consequence, the trait ai for individual i is

ai = a0 +
∑

m∈Mi

ϵm (6.1)

where a0 is the initial value of the trait in an isogenic population.

Now if i and j designate two individuals respectively carrying the mutation sets Mi and

M j , let us consider the case where individual i encounters a GTP originating from individual

j , thus carryingM j . By injecting DNA from individual j into the individual i , the GTP trans-

fers individual j ’s specific mutations to the recipient cell’s genotype without altering the mu-

tations already carried by i . Thus, i ’s mutation set will change from Mi to Mi ∪M j , and its

phenotype will be altered accordingly. The population coalescent (Figure 6.1b) shows that

when a transduction event takes place between two distinct lineages, a new lineage results

from the recombination of the two original genetic material. In that sense, transduction can

be seen as driving ‘sparse sexual reproduction events’ [19]. Note that modeling the pheno-

typic effect of transduction cannot be based solely on individuals’ phenotypes; the explicit

tracking of genotypes is required. Indeed, if Mi as expressed as phenotype ai and M j as a j ,

there is no inferring phenotype ai∪ j solely from phenotypes ai and a j .

We now consider the simplest case of a resident population in which a mutant appears.

The mutation set of the resident population is the empty set ;, and the mutation set of the

mutant is {1}, i.e., Mr es = ; and Mmut = {1}. Then the following transduction events may

occur:

• Interaction between a cell and a GTP carrying DNA of the same genotype: no genotypic

or phenotypic change.

• Interaction between a resident cell and a GTP carrying mutant DNA: since ;∪{1} = {1},

the resident cell acquires the mutation set of the mutant and changes to the mutant

phenotype.

• Interaction between a mutant cell and GTP carrying resident DNA: since {1}∪;= {1},

the mutation set of the mutant is unchanged and there is no phenotypic change.

Thus, whether they interact with resident or mutant bacteria, resident GTPs do not al-

ter the phenotype of the recipient cells, while mutant GTPs may change the phenotype of

resident cells into the mutant phenotype. As a consequence, the bacterial population re-

mains dimorphic (i.e., transduction does not create a third phenotype) and the resident GTP

population has no effect on the overall population dynamics.
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6.2.2 Phage-bacteria population dynamics with mutation and transduc-

tion

We use a multitype logistic model of birth and death [149] to model the population dynam-

ics of resident bacteria with trait value a and mutant bacteria with trait value A (population

sizes X and Y , respectively), viruses (population size V ), and GTP carrying mutant DNA

(population size U ). The order of magnitude of the bacterial population size is denoted by

K . Bacteria reproduce asexually at rate b and die at rate d . Both rates may depend on the

population size and trait value; for simplicity, we will focus on the case where the nega-

tive demographic effect of competition for limited resources is borne out by the death rate.

Viruses form a homogeneous population, and GTPs are defined by the genotype and pheno-

type of their host of origin. Virions die at rate µv , and interactions between resident bacteria

and viral particles carrying mutant DNA occur at the individual rate ψ(a). An interaction

between a bacterium and an active virus results in instant lysis and a viral burst whereby β

new viral particles are created, each having a probability γ of being a GTP. When a bacterium

with trait a and a GTP from a cell with trait a′ come into contact, with probability η(a, a′) the

foreign DNA fragment is integrated by recombination into the recipient bacterial genome;

the smaller the difference between a and a′, the larger η(a, a′) is [257].

In the large population limit (large K ), population sizes X ,Y ,V ,U can be rescaled into

population densities x, y, v,u whose time dynamics are governed by the following determin-

istic equations [178] :



d x

d t
= (b(a)−dDD (a, x, A, y)x −ψ(a)v x −ψ(a)η(a, A)ux

d y

d t
= (b(A)−dDD (A, y, a, x)y −ψ(A)v y +ψ(a)η(a, A)ux

d v

d t
= (1−γ)β(ψ(a)x +ψ(A)y)v − (µv +ψ(a)x +ψ(A)y)v

du

d t
= γβψ(A)y v − (µv +ψ(a)x +ψ(A)y)u

(6.2)

Competition among cells is assumed to result in a density-dependent (DD) death rate

which increases linearly with density, given by

dDD (a, x, A, y) = d(a)+ c(a, a)x + c(A, a)y

dDD (A, y, a, x) = d(A)+ c(A, A)y + c(a, A)x
(6.3)

where d(a) (respectively d(A)) is the intrinsic death rate of individuals with trait value a

(resp. A) and c measures the intensity of competition between individual cells as a function

of their trait values. In a monomorphic population with trait value a, transduction alone has

no effect on bacteria’s phenotype, hence the phage-bacteria population equilibrium:
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x̄(a) = µv

ψ(a)((1−γ)β−1)

v̄(a) = 1

ψ(a)

(
r (a)− µv

ψ(a)((1−γ)β−1)
c(a, a)

) (6.4)

In our numerical simulations, for the chosen range of parameter values (see Table 6.1),

this equilibrium was always found to be globally stable. Virus-bacteria population cycles or

the extinction of one or both populations were never detected over our range of trait values.

6.2.3 Mutant invasion, Trait Substitution Sequence, and canonical equa-

tion of adaptive dynamics

We assume that the adaptation process is mutation-limited (mutation occurs rarely on the

timescale of population dynamics) and that mutations have small phenotypic effects. Those

are key assumptions under which the adaptation process in very large populations can be

described as a Trait Substitution Sequence (TSS) [181, 40].

Toolbox 6.1 Trait Substitution Sequence

In the TSS model, a mutant either invades and replaces the resident type, or goes to ex-

tinction – provided the population has not come too close to a potential evolutionary

optimum [116, 115]. This means that no two populations of resident and mutant bac-

teria that are phenotypically similar may coexist, except possibly near an evolutionary

optimum.

TSS

Invasion events

Successful invasion

Tr
ai
t

Time

The population evolves adaptively by making small phenotypic ‘jumps’ in the trait

space as in the figure above, each jump corresponding to the invasion of a successful

mutant into the former resident-trait population.

The invasion success of a mutant A in a resident population of trait value a is determined

by the mutant’s invasion fitness, i.e. the mutant population growth rate from initially very

small density in a resident population at ecological equilibrium. This is obtained from the

previous dynamical system for population densities (equation 6.2). In this paper, we use S
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and p to denote respectively the invasion fitness and invasion probability in the absence of

transduction, and ST and pT to denote invasion fitness and invasion probability with trans-

duction.

To infer the probability of invasion and characteristic invasion time while taking the pop-

ulation finiteness into account, we link the deterministic dynamical system describing the

dynamics of large populations to the stochastic individual-level process of birth and death

events driving the dynamics of small populations (initial mutant population, resident pop-

ulation upon complete invasion). Once the probability p(a, A) of invasion of a mutant trait

A in a resident population of trait a is known, we derive the ‘jump rate’ of the adaptation

process with transduction. To this end, we rescale time by K · rM , where K is the order of

population size and rM is the mutation rate. On this new timescale, the population evolves

adaptively in trait space according to the TSS model, jumping from trait a to trait A at rate

p(A, a) x̄(a) b(a) m(a,d A) (6.5)

where x̄(a) is the equilibrium population density of the resident trait a, and m(a,d A) is

the mutation kernel from trait a to trait A, taken as m(a,d A) = m(A−a)d A.

Taking the limit of arbitrarily small mutations happening fast (relative to the new timescale),

the TSS converges towards a process driven by the so-called ‘canonical equation of adaptive

dynamics’ [79, 41, 44]. In the absence of transduction, this limit process is deterministic and

the canonical equation reads

dat =σ2
0(at ) x̄(at ) b(at ) ∂1p(at , at ) (6.6)

where at denotes the trait value evolving as a function of time t , mutational phenotypic

effects are symmetrical, and σ0 is the standard deviation of the distribution of mutational

effects (mutation kernel, m). The direction of selection is given by the invasion probability

gradient ∂1p(a, a), i.e. the derivative of invasion probability p with respect to its first vari-

able, evaluated for a mutant trait value equal to the resident’s, a. In the general case without

transduction, the probability gradient can be expressed as the selection gradient ∂1S(a, a)

divided by the birth rate b(a). Thus, at any time t the rate of adaptation is a function of the

selection gradient, population size, and mutation size at that time.

‘Evolutionary singularities’ are trait values at which the selection gradient vanishes [182].

An evolutionary singularity, denoted by a∗, can be ‘attractive’ in the phenotype space, in

which case the TSS of a population whose phenotypic state is some distance away from a∗

will evolve under directional selection towards a∗. If selection around the singularity a∗ is

stabilizing, the TSS remains in a neighborhood of a∗. Selection may also turn disruptive

around a∗. Whether selection is stabilizing or disruptive is predicted by the criterion for

evolutionary branching [79, 44].
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6.2.4 Simulations

We performed individual-level simulations of populations and trait dynamics by implement-

ing a rigorous Gillespie algorithm, based on [40]. The speed of adaptation was estimated

from simulations of the TSS and compared to our mathematical approximations. All simu-

lations were carried out using constant rates of birth, intrinsic death, and infection, respec-

tively equal to b0,d0,ψ0. We used the following form for the competition term

c(a, A) :=
exp

(
−

(
(a−A)
σC

)2
)

K0 exp

(
−

(
(a−a∗)
σK

)2
) (6.7)

where σC measures competition sensitivity to phenotypic difference (a − A), K0 represents

the maximal carrying capacity of the environment, σK represents the sensitivity of the pop-

ulation carrying capacity to the distance of trait a to the phenotypic optimum a∗. We use

the following form for the transduction probability

η(a, A) := η0 exp

(
−

(
(a − A)

ση

)2)
(6.8)

where η0 is the maximal transduction probability andση measures the sensitivity ofψ to the

phenotypic difference (a − A). Default values for all parameters are listed in Table 6.1.

6.3 Results

6.3.1 Dynamics of bacterial adaptation without transduction

First we consider the baseline scenario in which the evolving bacterial population is exposed

to viral infection but no transduction occurs, η0 = 0. Here the invasion fitness S(A, a) of a

mutant trait A in a resident population of trait a is

S(A, a) = r (A)− c(a, A)x̄(a)−ψ(A)v̄(a). (6.9)

The term r (A)− c(a, A)x̄(a) is the invasion fitness in the absence of viral infection. The ad-

ditional term −ψ(A)v̄(a) measures the negative effect of infection on bacterial fitness. As

expected, this negative effect is stronger if the equilibrium viral population, v̄(a), or the in-

fection rate, ψ(A), is larger. From equation (6.9) it follows that the invasion probability is

p(A, a) = [S(A, a)]+/b(A), with a characteristic time of invasion of the order of log(K ) [27].

The direction of selection is given by the selection gradient ∂1S(a, a) and the rate of adap-

tation, by the canonical equation
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Parameter Expression Numerical values

Population size order K constant K = 200

Trait range ]aINF, aSUP[ aINF =−1.5

aSUP = 1.5

Birth rate b(a) = b0 constant b0 = 4 day−1

Death rate d(a) = d0 constant d0 = 0.5 day−1

Competition rate c(A, a) =
exp

(
−

(
(a−A)
σc

)2
)

K0 exp

(
−

(
(a−a∗)
σK

)2
) σC = 5

K0 = 5K

a∗ = 0

σK = 1

Infection rate ψ(a) =ψ0 constant ψ0 variable

Viral death rate µv constant µv = 5 day−1

Burst size V constant V = 100

Probability of GTP release γ constant γ= 0.01

Transduction probability η(a, A) = η0 exp

(
−

(
(a−A)
ση

)2
)

η0 variable

ση = 1

Mutation standard deviation h constant h = 0.01

TABLE 6.1: Default simulation parameters.
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dat =σ2
0(at ) x̄(at ) b(at ) ∂1p(at , at ). (6.10)

We assume that the functions r , c and ψ are such that there is a single evolutionary singu-

larity, a∗. For the model specifications used in our numerical simulations, a∗ exists and is

always globally attractive; selection around a∗ is stabilizing if σK < σC , or disruptive, with

evolutionary branching, if σK > σC . These conditions are identical to those obtained in the

absence of infection [82] .

6.3.2 Mutant invasion with transduction

With transduction (η0 > 0), invasion fitness ST (A, a) of a mutant trait value A in a resident

population of trait a is given by the following expression (see supplementary section A for

the mathematical derivation):

ST (A, a) = S(A, a)+ γ

1−γ ψ(A) v̄(a) η(a, A). (6.11)

Transduction alters invasion fitness by adding the positive term γ
1−γ ψ(A) v̄(a) η(a, A).

Thus, invasion fitness with transduction is always greater than invasion fitness without trans-

duction: ST (A, a) > S(A, a) (Figures 6.2a-b). We can further decompose the additive term

into three factors: ψ(A)v̄(a), γ
1−γ , and η(a, A). The first factor represents the rate at which

mutant bacteria interact with the viral population at ecological equilibrium with the resi-

dent bacterial population, each of these interactions being a potential opportunity for the

release of GTPs. The second factor measures the abundance of GTPs released by a mutant

infection relative to active viruses. Taken together, the two factors measure the strength of

potential transduction events compared to infection events. The last term represents the

proportion of these potential transduction events that result in actual genetic transfer. The

three factors together thus quantify the intensity of transduction.

As a consequence, mutants that are selected against (negative invasion fitness, S < 0) in

the absence of transduction may be favored and invade when transduction is strong enough,

resulting in ST > 0 (Figure 6.2b). Also, irrespective of the intensity of transduction, negatively

selected mutants (S < 0) that are phenotypically close to the resident phenotype always in-

vade. In fact, with transduction, any mutant of sufficiently small effect is predicted to invade.

Transduction also affects the mutant-resident dynamics following mutant invasion. The

potential for ‘back invasion’ by the resident population once rare is determined by the ‘back

invasion fitness’ (see supplementary section A):

S̃T (a, A) = S(a, A)− γ

1−γ ψ(a) v̄(A) η(a, A) (6.12)
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a b c

FIGURE 6.2: Influence of transduction on invasion fitness and the probability of invasion. (a) Contours of
invasion fitness S(A, a) in the absence of transduction. (b) Contours of invasion fitness ST (A, a) with tran-
duction (ψ0 = 1.0 and ψ0 = 10−5). The hatched area highlights trait values of a and A for which S(A, a) < 0

and ST (A, a) > 0. (c) Invasion probability pT (a, a) of a mutant that is phenotypically identical to the resident
strain, as a function of the resident trait value and transduction probability. Other parameters are set to their
default values (see Supplementary Table 1).

By making a negative contribution to the right-hand side of equation (6.12), transduction

generally hampers back invasion. In particular, for any mutation of small effect (S(A, a) ≈
0), transduction always begets invasion (ST (A, a) ≈ γ

1−γ ψ(A) v̄(a) η(a, A) > 0) and always

prevents back invasion (S̃T (a, A) ≈− γ
1−γ ψ(a) v̄(A) η(a, A) < 0).

Transduction always increases the invasion probability of a mutant (supplementary sec-

tion B). For small transduction rates (which is the case when mutations have small pheno-

typic effects) and large viral burst sizes (V >> 1, which is expected in natural systems), the

probability of invasion with transduction is given by the following approximation (supple-

mentary section B):

pT (A, a) ≈ [ST (A, a)]+/b(A). (6.13)

Of note, equations (6.11) and (6.13) imply ST (a, a) > 0 and pT (a, a) > 0 for any trait value

a. Thus, a mutant that is phenotypically identical to the resident type has positive invasion

fitness (Figure 6.2b), as opposed to zero invasion fitness in models without transduction

(Figure 6.2a). This is due to our explicit genotype-phenotype map: albeit phenotypically

identical to the resident type, the mutant type is genetically different (by definition, it carries

a new mutation) and our model of transduction accounts for this. Using notations intro-

duced earlier, we haveMr es =; andMmut = {1}, and our model predicts ST (Mmut ,Mr es) > 0.

However, ST (Mr es ,Mr es) = 0, which is consistent with the expectation that a mutant strain

that is identical, both genetically and phenotypically, to the resident strain should have zero

invasion fitness.

The invasion probability for mutants that are phenotypically identical to their resident

progenitor, p(a, a), provides an approximation for the invasion probability of mutations of
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small phenotypic effect. The probability pT (a, a) is higher near the evolutionary singularity

a∗ (Figure 6.2c). Thus, due to transduction, the invasion probability of any mutation of small

effect increases as the adaptation process brings the population closer to the evolutionary

singularity.

6.3.3 Rate of adaptation with transduction

Here we assume that mutations have small phenotypic effects. By rescaling time appropri-

ately, we derive a macroscopic model for the dynamics of adaptation similar to the canonical

equation. With transduction, however, the macroscopic model retains a stochastic compo-

nent and takes the form of a stochastic differential equation or integro-differential equation,

depending on the shape of the mutation kernel. The models, hence the dynamics of adap-

tation that they capture, critically depend on whether the mutation kernel is symmetrical

around zero (unbiased mutational effects) or not (biased mutational effects), and determine

whether adaptation will be deterministic or stochastic (see all mathematical derivations in

supplementary section C).

Case of unbiased mutation

With unbiased mutation the rate of adaptation is controlled by

d at = u(at ) ∂1pT (at , at ) d t +√
u(at ) pT (at , at ) dWt (6.14)

where u(at ) = σ2
0(at ) b(at ) x̄(at ) and Wt is a Brownian motion. The Brownian component

arises because transduction causes pT (a, a) > 0. The mean adaptation rate with transduc-

tion is given by the deterministic part of the stochastic canonical equation (6.14). To assess

the effect of transduction on adaptation speed away from the evolutionary optimum, we

compare this deterministic part to the similar term in the canonical equation without trans-

duction, equation (6.10). Under our simulation assumptions (i.e. birth rate, infection rate,

and mutation size independent of the trait), u(at ) is constant, and the rate of adaptation is

solely determined by the invasion probability pT (at , at ) and its first derivative ∂1pT (at , at ).

The adaptation rate is always higher with transduction, all the more so as the maximum

transduction rate, η0, is larger (Figures 6.3a-c). As evolutionary trajectories come closer to

the optimum, the (absolute) difference in adaptation rate with vs. without transduction be-

comes smaller (Figure 6.3b), but this effect is largely driven by the general tendency for adap-

tation to slow down near the optimum. When controlling for the slow down by computing

the relative difference in adaptation rates, the accelerating effect of transduction remains

(Figure 6.3c). Numerical simulations of the TSS agree with these analytical results (Figures

6.4a-c).
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a b c

FIGURE 6.3: Influence of transduction on adaptation rates. (a) Rate of adaptation with transduction as a
function of trait value a, for a given maximum transduction probability, η0. (b) Absolute and (c) relative dif-
ference between rates of adaptation with and without transduction. The evolutionary optimum is at a∗ = 0,
and parameters are set at their default values (see Table 6.1).

Because the invasion probability pT (a, a) increases as trait a approaches a∗ (Figures

6.2c), we expect the dynamics of adaptation to become more stochastic as the population

evolves closer to the singularity a∗. This is confirmed by numerical simulations of the TSS

(Figures 6.4a-c). Thus, transduction increases both adaptation speed away from the opti-

mum, and stochasticity near the optimum. To quantify the net effect of these antagonistic

influences on adaptation, we use an index of adaptation, I , defined as the ratio of the speed

of adaptation without transduction relative to the mean sojourn time of the population in a

small phenotypic neighborhood around the evolutionary optimum (defined as all trait val-

ues a for which 1/c(a, a) > 0.99K0). I ≪ 1 means that the stochastic component of adapta-

tion pushes the process away from the evolutionary optimum faster than the deterministic

driver can pull it back. In this case, the population remains in a maladapted state, i.e. away

from the predicted optimum. Conversely, I ≫ 1 means that the deterministic driver of adap-

tation brings the population near its evolutionary optimum faster than the stochastic com-

ponent upsets adaptation. In this case, adaptation trajectories can be approximated with

exponential functions of time t of the form C exp(−αt ). The parameter α then provides a

measure of convergence speed that can be compared across models with and without trans-

duction.

We used numerical simulations to evaluate how the adaptation index, I , and adaptation

convergence speed, α, respond to two key parameters of the bacteria-phage interaction, the

rate of infection, ψ0, and the maximum probability of transduction, η0 (Figures 6.4d-f). If

either one of the infection rate, ψ0, or transduction probability, η0, is very low (less than ca.

0.01), then I ≫ 1 and the adaptation trait dynamics closely follows its predicted determin-

istic path towards a∗ (Figures 6.4a,d). If both ψ0 and η0 are large enough (product larger

than ca. 5 10−4), then I ≪ 1, meaning that even though convergence towards an evolution-
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a b c

d e f
t / Krm t / Krm t / Krm

FIGURE 6.4: Influence of transduction on adaptation rates. (d-f) Simulated Trait Substitution Sequences (TSS)
for ψ0 = 10−5 and (d) η0 = 0.01, (e) η0 = 0.25, and (f) η0 = 0.5. 30 simulation runs for each ψ0 value were
performed (light blue and light red lines) with a time normalization by a factor of K m. The thick dark lines
represent the mean trajectory for each set of simulations. (g) Adaptation index, I . Blue and red shades
respectively indicate I > 1 (the dominant effect of transduction is to accelerate adaptation away from the
optimum) and I < 1 (the dominant effect of transduction is stochasticity around the optimum). (h) Absolute
and (i) relative difference in convergence adaptation speed, α, with vs. without transduction, calculated from
100 simulation runs for each pair of transduction probability and infection rate. Other parameters are set to
their default values (see Table 6.1). See text for definitions of I and α.
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ary optimum is expected, the adaptation trajectories strongly fluctuate around the optimum

without ever settling down (Figures 6.4b-d). Increasing the transduction probability gen-

erally increases the adaptation convergence speed (Figures 6.4a-c,e). The absolute effect,

in comparison with the convergence speed without transduction, is sensitive to the infec-

tion rate, being strongest at low infection rates (Figure 6.4e). This is because the mortality

cost of infection tends to attenuate the accelerating effect of transduction on adaptation.

When measuring the effect of transduction on the convergence speed relatively to the speed

without transduction (relative convergence speed, Figure 6.4e), we find that the larger the

infection rate, the stronger the positive effect of transduction on the speed of adaptation.

Case of biased mutation

With biased mutation, the average mutational effect is nonzero and given by

m0(a) =
∫ 1

−1
h m(a,h)dh

Then the characteristic timescale over which adaptation proceeds is set by t/ϵ, where t is the

baseline timescale over which the cells’ population dynamics unfold. The t/ϵ timescale is

much shorter than the t/ϵ2 timescale over which adaptation proceeds with unbiased muta-

tion, i.e. adaptation occurs much more rapidly with biased mutation. On this faster timescale,

the stochasticity of the adaptation process with transduction is smoothed out, and the adap-

tation dynamics are governed by a deterministic ordinary equation

d at = m0(at )
γ

1−γη0 ψ(at ) x̄(at ) v̄(at ) d t . (6.15)

In this case, the long-term adaptation dynamics takes steps of the order of the average muta-

tional bias, measured by m0(a), at a rate given by the population rate of transduction events,

equal to γ
1−γ η0 ψ(at ) x̄(at ) v̄(at ).

6.3.4 Effect of transduction on bacterial adaptive diversification

Without transduction, the model predicts conditions under which selection turns from di-

rectional to disruptive around the evolutionary singularity a∗, resulting in a case of evolu-

tionary branching (Figure 6.5a). A full mathematical investigation of evolutionary branching

with transduction goes beyond the scope of this paper. Instead we gained some insights into

the effect of transduction on bacterial adaptive diversification from a large set of numerical

simulations. The simulations consistently show that even the lowest level of transduction

widens the trait range over which a mutant can invade in a neighborhood of the evolution-

ary singularity (Figures 6.5b-f). Nonetheless, evolutionary branching occurs under the con-
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a b

c d

e f

Pairwise invasability plot Individual-based model

>

FIGURE 6.5: Pairwise invasibility plots and example simulations of trait distribution dynamics. The trans-
duction probability, η0, takes the following values: (a) 0; (b) 0.01; (c) 0.05; (d) 0.1; (e) 0.25; (f) 0.5. For each
value of η0, the left pane shows regions of resident and mutant trait values for which mutant invasion fitness
is positive (blue) or resident invasion fitness is positive (red). In the region of overlap (purple), the mutant and
resident populations may coexist. Right panes show trait distribution dynamics simulated by making use of a
Gillespie algorithm. Parameter values: ψ0 = 10−5, σK = 2, σC = 1, and other parameters set to their default
values (see Table 6.1).
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ditions predicted in the absence of transduction, and the fact that back invasion fitness is

always negative does not seem to slow the process.

At low transduction rate (low η0), a third, intermediate branch can evolve and station

around the evolutionary singularity, which is a fitness minimum (Figures 6.5b-d). This branch

emerges from the mixing of genomes in the two outer branches (as explained in Figure 6.1)

and follows either one of these branches. This is because they only persist thanks to hori-

zontal gene transfer, and would go extinct without the flux of individuals coming from the

original branch. Thus, competition exerted by individuals in the intermediate branch select

for further divergence of the outer branches (Figure 6.5d). In sum, transduction at low rates

tends to increase the genetic and phenotypic diversity and phenotypic range that evolves in

the population.

At higher transduction rates, large stochastic variations manifest in the outer two branches,

which then tend to outcompete any middle branch (Figures 6.5e,f). Large stochastic excur-

sions of one branch away from the evolutionary singularity may allow the other branch to

stay closer to the singularity (Figures 6.5e,f). Thus, transduction makes it possible for a sub-

population to station around an evolutionary optimum which is a fitness minimum. When

this happens, competition exerted by this sub-population prevents any third branch from

even sprouting (Figures 6.5e,f). See Supplementary figure 1 for additional example simula-

tions.

6.4 Conclusions

Horizontal gene transfer is expected to have conflicting effects on bacterial adaptation: the

transfer of beneficial mutations may facilitate and accelerate adaptation, while the transfer

of deleterious mutations might hold adaptation back. Transduction by virulent phages adds

a direct demographic factor to these conflicting effects, since the frequency of gene transfer

is tied to viral infection hence to cell mortality. To resolve the effect of transduction on bac-

terial adaptation, we extended the trait-based approach of adaptive dynamics modeling to

include a simple genotype-phenotype map and capture the mobility of genetic elements be-

tween host cells and their potential phenotypic effects. Our hybrid – genetic and trait-based

– approach uses an infinite-site, infinite-allele model with small additive effects of muta-

tions. Our model applies to generalized transduction by virulent phages and assumes that

‘back transduction’ of a descendant allele recombining at the progenitor locus is a very un-

likely event, which is consistent with the non-homologous end joining transduction mecha-

nism [221].

In the absence of transduction, the mortality cost of viral infection tends to slow bacterial

adaptation down. A key of transduction is to increase the invasion fitness of any mutant, irre-

spective of their fitness effect (deleterious or beneficial) in the absence of transduction. This
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makes it possible for deleterious alleles to invade, and for beneficial alleles to invade faster.

Far from an evolutionary optimum, the positive fitness effect on deleterious mutations (of

a given mutational effect size) is small relative to the effect on beneficial mutations. As a

consequence, adaptation can be much faster with transduction than without. Close to an

evolutionary optimum, transduction tends to reduce the fitness difference between delete-

rious and beneficial mutants and both can have relatively high positive invasion fitness. This

can generate strong stochastic fluctuations in the adaptive trajectories. If the evolutionary

optimum is a fitness minimum in the absence of transduction, thus turning selection from

directional to disruptive, the expected phenotypic polymorphism and divergence also oc-

curs with transduction. At low transduction rates, a subpopulation may even persist near

the optimum, driving further phenotypic divergence of the other coexisting subpopulations.

At high transduction rates, stochasticity drives large fluctuations in phenotypic branches,

including recurrent incursions near the optimum.

Previous studies (e.g. Moradigaravand and Engelstädter [188]) have modeled and dis-

cussed this ‘bad gene effect’ of HGT. Non-homologous end joining transduction is distinct

in the sense that the bad gene effect never consistently reverts the direction of selection, as

it may in the case of conjugation [27]. Rather, it tends to broaden the range of selection out-

comes. As the transfer term of invasion fitness S(A, a) is positive for any mutant trait that

arises in the resident population, not only may deleterious trait values invade, but beneficial

trait values have even greater invasion fitness than they would have in the absence of trans-

duction, implying a larger probability of invasion and a shorter invasion time. Quantitatively,

these effects can be substantial (Figure 6.2b). This prediction is consistent with previous the-

oretical results on HGT [56] and experimental data showing that horizontal gene transfer can

facilitate adaptation by accelerating the fixation of beneficial alleles [19].

With transduction, any small phenotypical variant has positive invasion fitness. As a con-

sequence, even though directionality towards the evolutionary optimum remains favored (as

shown by the deterministic term in the canonical equation (6.14)), random jumps of the TSS

in the opposite direction are possible at any mutation event. This broad range of invading

mutants around the evolutionary optimum fuels wide stochastic fluctuations in the adap-

tation process. Stochastic fluctuations of the adaptation trajectory due to transduction are

most pronounced near the evolutionary optimum, a∗, thereby hampering convergence to

the evolutionary optimum and preventing the stabilization of adaptive trajectories around

it. This is a consequence of the ‘top-down’ control of the bacterial population by viruses,

which means that for traits closer to the evolutionary optimum, the population of viruses

(not bacteria) becomes larger, resulting in a higher rate of transduction and eventually a

wider range of mutant phenotypes with positive invasion fitness around a∗.

Stochasticity in adaptive evolution is generally associated with genetic drift in finite (small)

population size. In contrast, the adaptation stochasticity evidenced here occurs in spite of

the large population size, and its long-term effect on the adaptive trait dynamics is captured
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by the stochastic canonical equation (6.14). This equation can be compared with the canon-

ical equation for finite populations [43]. Both equations contain a stochastic term propor-

tional to the square root of the invasion probability of a neutral trait. Classically, the non-zero

value of this term reflects the effect of genetic drift in finite populations. Here, the popula-

tion is virtually infinite and the non-zero value comes from the stochasticity of transduction

events. Although the root cause of stochasticity is profoundly different, this outcome is qual-

itatively similar: deleterious alleles can invade and go to fixation.

The fact that trait fluctuations still occur near the evolutionary optimum implies that the

host population will never be fully adapted to a static environment: by facilitating the fixa-

tion of any mutant, transduction lowers the mean fitness of the population. This is in line

with previous studies showing that HGT is not a facilitator of adaptation in static environ-

ments [223]. In contrast, transduction is expected to accelerate adaptation in response to

environmental change that changes the evolutionary optimum, all the more so as the shift

in optimum is greater.

Our results also shed new light on the effect of horizontal gene transfer on genetic and

phenotypic diversity [196]. Transduction events add new lineages to the population (Fig-

ure 6.1), with two contrasting outcomes that are revealed by individual-level simulations

(Supplementary figure 1), either enhanced diversification or apparent optimization. At low

transduction rates, the genome-mixing effect of transduction dominates and trait diversity

increases. At higher transduction rates, the stochasticity of transduction events scale up and

cause the stochastic motion of evolutionary branches; this may result in ‘apparent optimiza-

tion’ whereby one branch (sub-population) remains close to the evolutionary optimum, thus

causing extinction of some or all the other branches, hence a reduction in trait diversity.

Our analysis highlights the influence of transduction rate parameters on the rate and dy-

namics of bacterial adaptation. These parameters are: the infection rate, ψ, the gene trans-

ducing particles (GTP) production fraction, γ, and the maximum transduction probability,

η0. The latter two, that are specific to the transduction process, remain poorly constrained.

Laurenceau et al. [152] provided evidence suggesting that generalized transduction is the

dominant mode of transduction in Prochlorococcus, the most abundant phototrophs in the

open ocean. By examining the mispackaging of host DNA by different cyanophages, they de-

scribed a mechanism to explain the production of GTPs, which paves the way toward quan-

tifying GTP production. Interestingly, their proposed mechanism suggests that GTP produc-

tion might respond to environmental conditions and vary with ocean depth, latitude, and

season. Quantitative data are also lacking for the maximum transduction probability, η0. It

is known that multiple barriers exist to prevent the recombination of exogenous DNA in the

recipient cell [220, 203], and here too, a better understanding of the mechanism should help

estimating this critical parameter. The development of new sequencing-based methodol-

ogy, e.g. Kleiner et al. [144] transductomics approach, will inform these efforts by providing

insights into real-time ongoing HGT in complex microbial communities.
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Our model is focused on generalized transduction by virulent phages. Future develop-

ments will aim at extending the model to temeperate (lysogenic) phages, which can also

drive specialized and lateral transduction. This will broaden the scope of our framework to

questions involving the evolution of transduction-related traits in both bacterial host and

phage populations. All three transduction parameters may be under the genetic control of

both phage and host – the infection rate by virulent genes and resistant genes, respectively;

the GTPs production rate and transduction probability by viral genes that control DNA ex-

cision and packaging and host genes that control DNA integration. With temperate phages

that can transfer bacterial DNA without killing recipient cells, positive selection pressures

may exist on genes that benefit both hosts and phages [100, 275] and result in high-frequency

transduction [46].

Adaptation acceleration could have numerous implications for marine ecosystems, and

transduction is expected to have an important role in shaping genetic diversity in the oceans:

the number of transduction events in Tampa Bay, Gulf of Mexico alone has been estimated at

1014 per year [139]. In the context of rapidly changing marine environments due to climate

warming, a better understanding of bacterial response due to transduction is a step towards

integrating this important mechanism in global biogeochemical models of the oceans.

For transduction involves the transfer and integration of alleles between hosts, models

that keep track of the individuals’ phenotype (but not genotype) are insufficient to describe

the adaptive trait dynamics of a host population in which transduction occurs. Our modeling

approach goes beyond previous population-genetic models of HGT [196, 174, 195] to track

the genealogy of mutations together with phenotypic trait values, which influence demo-

graphic performance and ecological interactions among individuals and their environment.

Beyond the question of how transduction affect host adaptation, the mathematical method

used here could pave the way to further advance the integration of transmission genetics in

trait-based models of adaptation.
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A Deriving the invasion fitness with transduction

We assume the system to be at this equilibrium when the mutant with trait A appears. We then have to see how

the system evolves when the initial conditions are given by

(x(t = 0), y(t = 0), v(t = 0),u(t = 0)) = (x̄(a),ϵy , v̄(a),ϵu)

where ϵy ,ϵu > 0 are infinitely small. We then place ourselves at t = 0+. At the first order, x(t ) and v(t ) are

constant, therefore the dynamics of the invading population are driven by the linear system


d y
d t

∣∣∣
t=0+

= (b(A)−d(A)− c(a, A)x̄(a)−ψ(A)v̄(a))ϵy +ψ(a)η(a, A)x̄(a)ϵu

du
d t

∣∣∣
t=0+

= γβψ(A)v̄(a)ϵy − (dv +ψ(a)x̄(a))ϵu .

(6.16)

Invasion success is determined by the eigenvalues of this linear system. If both values are real and negative,

the resident equilibrium is stable, and invasion fails. On the contrary, if both values are real (being conjugated)

and one is positive, invasion succeeds. The eigenvalues, denoted by λ+ and λ−, are given by

λ± = 1

2

(
S(A, a)− (dv +ψ(a)x̄(a))±

p
∆

)
(6.17)

where

S(A, a) = r (A)− c(a, A)x̄(a)−ψ(A)v̄(a) (6.18)

and

∆= (S(A, a)+ (dv +ψ(a)x̄(a)))2 +4(γψ(a)ψ(A)η(a, A)βx̄(a)v̄(a)).

Here, S(A, a) represents the invasion fitness in the absence of transduction, meaning when η(a, A) = 0. As

expected intuitively, invasion fitness is higher if the mutant intrinsic growth rate is larger, or the competition or

infection pressure experienced by the mutant from the resident population is weaker.

Since both of its terms are positive, ∆ ≥ 0 (i.e. all eigenvalues are real). Both eigenvalues being real, we

can focus on the greater of the two, which is λ+. There are two cases that emerge then: either λ+ is negative,

implying that the resident equilibrium will be stable, or it is positive, and then we can conclude that the resident

equilibrium will be unstable, and that invasion will succeed.

If ∆> (S(A, a)− (dv +ψ(a)x̄(a)))2, then λ+ > 0. By rewriting ∆ as

∆= (S(A, a)− (dv +ψ(a)x̄(a)))2 +4((dv +ψ(a)x̄(a))S(A, a)+γψ(a)ψ(A)η(a, A)βx̄(a)v̄(a)).

we can then conclude that λ+ > 0 if

S(A, a)+ γ

1−γ ×ψ(A)v̄(a)×η(a, A) > 0. (6.19)

Reciprocally, if λ+ > 0, either S(A, a)− (dv +ψ(a)x̄(a)) > 0 and then in particular S(A, a) > 0 and (6.19) is

satisfied, or −p∆ < S(A, a)− (dv +ψ(a)x̄(a)) < 0, and after some algebra we can conclude that (6.19) is also

satisfied.

We then obtain invasion Fitness with transduction, denoted by ST (A, a):

ST (A, a) := S(A, a)+ γ

1−γψ(A)v̄(a)η(a, A). (6.20)

If ST (A, a) > 0, a mutant individual with trait A can invade a resident population with trait a, otherwise invasion

does not occur.
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Back invasion

Now that we know the conditions under which a mutant population can invade a resident population, let us see

how the resident population bodes when it ‘invades back’ a mutant population. This case is useful to determine

whether an invasion by the mutant will result in a coexistence equilibrium between mutant and resident, or if

we can work under the invasion implies fixation hypothesis.

The same calculations as before show us that we can define the backward invasion fitness S̃T as such:

S̃T (a, A) = S(a, A)− γ

1−γψ(a)v̄(A)η(a, A). (6.21)
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B Deriving the invasion probability with transduction

In the previous section, we have looked at the condition a mutant bacterium of trait A must satisfy in order to

be able to invade the resident bacterium of trait a. But due to the stochastic nature of the process, even when

a mutant bacterium satisfies (6.19), the invasion is not guaranteed. In this section, we compute the probability

invasion of a mutant bacteria and the characteristic time it takes for an invasion to unfold. We largely base our

work on Champagnat, Ferrière, and Méléard [42] to derive the probability invasion.

Coupling of the process with a simple branching process

We put ourselves at the resident equilibrium (6.4), with the notation (x̄(a)·K ,0, v̄(a)·K ,0) and study the individual-

based process (X K ,Y K ,V K ,U K ). We introduce a small perturbation (Y0,U0), negligeable in front of the other

values. Let us introduce ϵ> 0.

Let us divide an invasion event in 3 distinct phases for K large enough, as it is done in [40] (we work un-

der the assumption that the mutation is small enough so that no cohabitation between mutant and resident

populations is possible):

1. The mutant population Y K either reaches the threshold size of ϵ or becomes extinct.

2. If the mutant population is not extinct, a new equilibrium will be reached following the deterministic

approximation until the resident population reaches the threshold size of ϵ.

3. The resident population becomes extinct.

The idea here is the following: we want to prove that when K →+∞, the behavior of the invading popula-

tion (Y K ,U K ) tends to a branching process until the total population reaches a threshold size ϵ for ϵ> 0, while

X K ,V K stay relatively constant at their dynamical equilibrium.

The ecological equilibrium of the resident population

Let us first show that we can assume that the resident bacteria population and virion population stay at ecolog-

ical equilibrium during the first phase. During this phase, mutant population Y K hasn’t reached the threshold

ϵ yet. If we refer to the dynamical equation, this means that, at the first order with respect to ϵ, resident bacteria

and virion populations stay at ecological equilibrium (x̄(a)·K , v̄(a)·K ). The jumps of the stochastic process are

of order O(1/K ). Since we work under large values of K and that the ecological equilibrium (x̄(a) ·K , v̄(a) ·K ) is

term-by-term nonzero, we can conclude that at order O(1/K ), resident bacteria and virion populations stay at

ecological equilibrium (x̄(a) ·K , v̄(a) ·K ).

In conclusion, we can assume that during the first phase, resident bacteria and virion population remain

constant in size at ecological equilibrium.

Trajectorial representation of the invading population for the first phase

Let us define the following Poisson point measures:

• Birth of a mutant: N1(d s,du) on R+×R+ with intensity measure d sdu

• Death of a mutant: N2(d s,du) on R+×R+ with intensity measure d sdu

• Infection of a mutant: N3(d s,du) on R+×R+ with intensity measure d sdu

• Transduction of a resident: N4(d s,du) on R+×R+ with intensity measure d sdu

• Death of a GTP: N5(d s,du) on R+×R+ with intensity measure d sdu
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We then can describe our mutant process through the following trajectorial representation:

(
Y K

t

U K
t

)
=

(
Y K

0

U K
0

)
+

∫ t

0

∫
R

(
+1/K

0

)
1u ≤ Y K

s− b(A) N1(d s,du)

+
∫ t

0

∫
R

(
−1/K

0

)
1u ≤ Y K

s− (d(A)+c(a,A)x̄(a)+c(A,A)Y K
s− ) N2(d s,du)

+
∫ t

0

∫
R

β∑
i=0

(
−1/K

i /K

)
1

Y K
s−

∑i−1
j=0 p

(β,γ)
i ψ(A)v̄(a) <u ≤ Y K

s−
∑i

j=0 p
(β,γ)
i ψ(A)v̄(a)

N3(d s,du)

+
∫ t

0

∫
R

(
+1/K

−1/K

)
1u ≤ U K

s− ψ(A)v̄(a) N4(d s,du)

+
∫ t

0

∫
R

(
0

−1/K

)
1u ≤ U K

s− (dv+ψ(A)Y K
s− ) N5(d s,du).

Bounding our process with branching processes

Let us now show that we can find two branching processes (Ỹ K ,1,Ũ K ,1), (Ỹ K ,2,Ũ K ,2) such as

∀t ∈R, Ỹ K ,1
t ≤ Y K

t ≤ Ỹ K ,2
t

Ũ K ,1
t ≤U K

t ≤ Ũ K ,2
t .

(6.22)

Using the same Poisson point measures and the same initial condition, let us define the following pro-

cesses, we define

(
Ỹ K ,1

t

Ũ K ,1
t

)
=

(
Y K

0

U K
0

)
+

∫ t

0

∫
R

(
+1/K

0

)
1u ≤ Ỹ K ,1

s− b(A) N1(d s,du)

+
∫ t

0

∫
R

(
−1/K

0

)
1u ≤ Ỹ K ,1

s− (d(A)+c(a,A)x̄(a)+c(A,A)ϵ) N2(d s,du)

+
∫ t

0

∫
R

β∑
i=0

(
−1/K

i /K

)
1

Ỹ K ,1
s−

∑i−1
j=0 p

(β,γ)
i ψ(A)v̄(a) <u ≤ Ỹ K ,1

s−
∑i

j=0 p
(β,γ)
i ψ(A)v̄(a)

N3(d s,du)

+
∫ t

0

∫
R

(
+1/K

−1/K

)
1u ≤ Ũ K ,1

s− ψ(A)v̄(a) N4(d s,du)

+
∫ t

0

∫
R

(
0

−1/K

)
1u ≤ Ũ K ,1

s− (dv+ψ(A)ϵ) N5(d s,du)

and

(
Ỹ K ,2

t

Ũ K ,2
t

)
=

(
Y K

0

U K
0

)
+

∫ t

0

∫
R

(
+1/K

0

)
1u ≤ Ỹ K ,2

s− b(A) N1(d s,du)
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+
∫ t

0

∫
R

(
−1/K

0

)
1u ≤ Ỹ K ,2

s− (d(A)+c(a,A)x̄(a)) N2(d s,du)

+
∫ t

0

∫
R

β∑
i=0

(
−1/K

i /K

)
1

Ỹ K ,2
s−

∑i−1
j=0 p

(β,γ)
i ψ(A)v̄(a) <u ≤ Ỹ K ,2

s−
∑i

j=0 p
(β,γ)
i ψ(A)v̄(a)

N3(d s,du)

+
∫ t

0

∫
R

(
+1/K

−1/K

)
1u ≤ Ũ K ,2

s− ψ(A)v̄(a) N4(d s,du)

+
∫ t

0

∫
R

(
0

−1/K

)
1u ≤ Ũ K ,2

s− dv
N5(d s,du).

The only differences come from the deaths of a mutant and the death of a GTP. The second order terms have

been either replaced by ϵ (for the lower bound: indeed, by definition of the first phase, Y K
t ≤ ϵ) or completely

removed (for the upper bound).

Let us now verify that we indeed have

∀t ∈R, Ỹ K ,1
t ≤ Y K

t ≤ Ỹ K ,2
t ,

Ũ K ,1
t ≤U K

t ≤ Ũ K ,2
t .

Let us show that if at time t1 ∈R+, (6.22) is verified, then it shall be verified for all the times t > t1.

Let us call T the first event that occurs after t1. Since the Poisson point measures are the same, we can

conclude that we will be studying the same point in one of the PPM Ni for i ∈ 1, ...,5. Let us see the different

possibilities:

• Birth of a mutant: thanks to the hypothesis, we know that

Ỹ K ,1
T − ≤ Y K

T − ≤ Ỹ K ,2
T −

so

Ỹ K ,1
T − b(A) ≤ Y K

T −b(A) ≤ Ỹ K ,2
T − b(A)

which means that a jump of +1/K for Ỹ K ,1 (i.e. u ≤ Ỹ K ,1b(A)) would imply a jump for Y K which would

imply a jump for Ỹ K ,2. No matter what, the order is respected.

• Death of a mutant: here, we can’t use the same argument as before. Indeed, let us look closer at the

relationship between Ỹ K ,1
T − and Y K

T − . We know that

Ỹ K ,1
T − ≤ Y K

T −

but

d(A)+ c(a, A)x̄(a)+ c(A, A)ϵ≥ d(A)+ c(a, A)x̄(a)+ c(A, A)Y K
T − (6.23)

so there could be instances where Y K would jump of −1/K but not Ỹ K ,1. We then need to make differ-

ence between two cases:
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– If Y K
T − > Ỹ K ,1

T − then we know that Y K
T − −1/K ≥ Ỹ K ,1

T − , since Y K , Ỹ K ,1 ∈N/K , so the order is kept.

– If Y K
T − = Ỹ K ,1

T − , then since (6.23) we can infer

Ỹ K ,1
T − (d(A)+ c(a, A)x̄(a)+ c(A, A)ϵ) ≥ Y K

T − (d(A)+ c(a, A)x̄(a)+ c(A, A)Y K
T − )

so a jump for Y K would here imply a jump for Ỹ K ,1. The order is yet again respected.

The same arguments can be made between Y K and Ỹ K ,2, so we can concude that the order is respected.

• Other events: the three other events that can occur are dealt with in the same way that we just did on

the first two cases.

Since we have the same initial condition, we can conclude that (6.22) is verified for t = 0, meaning we have

it verified for all t > 0.

By construction, we indeed have found two branching processes such as

∀t ∈R, Ỹ K ,1
t ≤ Y K

t ≤ Ỹ K ,2
t

Ũ K ,1
t ≤U K

t ≤ Ũ K ,2
t .

Conclusion

What we have just proven is that for every K ∈N∗, every ϵ> 0 and especially every ω (ω being the realization of

the Poisson point measures) we have

∀t ∈R, Ỹ K ,1
t ≤ Y K

t ≤ Ỹ K ,2
t

Ũ K ,1
t ≤U K

t ≤ Ũ K ,2
t

where ∀t ∈R, limϵ→0 Ỹ K ,1
t = Ỹ K ,2

t (resp. for Ũ K ,i ).

We can then conclude, when K is large, and when ϵ→ 0, the process (Y K ,U K )t converges with high prob-

ability towards the two-type branching process with the following transitions:

Next state Rate Event

(Y +1,U ) b(A)Y Birth

(Y −1,U ) (d(A)+ c(a, A)x̄(a))Y Death

(Y +1,U −1) ψ(a)η(a, A)x̄(a)U Transduction

(Y −1,U +k) ψ(A)v̄(a)p(β,γ)
k Y Infection

(Y ,U −1) dvU +ψ(a)(1−η(a, A))x̄(a)U Death

The same reasonning can be applied to the third phase with individuals of type Y ,V ,U being at ecological

equilibrium and individual of type X going to extinction. We then find a simple birth and death branching

process which we will study further down this paper.
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Probability of invasion

Once the process reaches the threshold size of ϵ, the large population limits allows us to conclude that the

invasion is successfull (since ST (A, a) > 0). Hence, the probability of invasion of the mutant populations can be

determined by the probability that the coupled two-type branching process described above diverges towards

infinity.

Let us call ui , j =P((Y ,U ) will become extinct |Y = i ,U = j ) and note u1 = u1,0 and u2 = u0,1. We have

∀i , j ≥ 0,ui , j = (u1)i × (u2) j . (6.24)

When analysing the process, we find that (u1,u2) verifies


u1 = q1u2

1 +
∑β

k=0 q2p(β,γ)
k (u2)k + (1−q1 −q2)

u2 = q3u1 + (1−q3)

(6.25)

where

q1 = b(A)

b(A)+d(A)+ c(a, A)x̄(a)+ψ(A)v̄(a)

q2 = ψ(A)v̄(a)

b(A)+d(A)+ c(a, A)x̄(a)+ψ(A)v̄(a)

q3 = ψ(a)η(a, A)x̄(a)

ψ(a)x̄(a)+dv
= η(a, A)

(1−γ)β
.

Bacteria-phage coexistence implies (1−γ)β> 1, which assures us that q3 < 1.

A typical invasion starting off with only one mutant bacterium, we introduce the probability of invasion as

pT (A, a) = 1−u1. We take the first line of (6.25), which is equal to

u1 = q1u2
1 +q2(1−γ+γu2)β+ (1−q1 −q2).

We note that u2 = 1−q3(1−u1) = 1−q3pT (A, a) and replace u1 by 1−pT (A, a). We then find that pT (A, a)

satisfies the following equation:

b(A)×pT (A, a)2 −S(A, a)×pT (A, a)+ψ(A)v̄(a)

(
1− γη(a, A)

(1−γ)β
×pT (A, a)

)β
−ψ(A)v̄(a) = 0.

For readability purposes, we will continue to use q3 for the remainder of this proof.

It is interesting to see that when transduction does not occur (i.e. η(a, A) = 0), we have q3 = 0 and the result

becomes:

p(A, a) = [S(A, a)]+
b(A)

. (6.26)

We can see that the result is akin to the one found when studying a simple branching process. Indeed, since

the GTP population will have no impact whatsoever when η(a, A) = 0, we can restrain ourselves to the study of

said branching process.

We shall now focus on proving the existence and uniqueness of a root p ∈ (0;1) to the following polynom

under the conditon ST (A, a) > 0, ST (A, a) being defined in (6.11):

Q = b(A)×X 2 −S(A, a)×X +ψ(A)v̄(a)(1−γq3 ×X )β−ψ(A)v̄(a).

To do this, we shall use the Descartes’ Rule of Signs [75], which states that if the terms of a single-variable

polynomial with real coefficients are ordered by descending variable exponent, then the number of positive

138



B. Deriving the invasion probability with transduction

roots of the polynomial is either equal to the number of sign differences between consecutive nonzero coeffi-

cients, or is less than it by an even number.

For this approach, we will use the following switch in variables:

ξ= 1−γq3 ×X .

It is important to note that, since γ< 1, q3 < 1, we know that X ∈ [0;1] if and only if ξ ∈ [1−γq3;1] ⊂ [0;1].

This leads to the new following polynomial:

Q̃ =ψ(A)v̄(a)ξβ+ b(A)

γ2q2
3

ξ2 + 1

γq3

(
S(A, a)− 2b(A)

γq3

)
ξ−ψ(A)v̄(a)− S(A, a)

γq3
+ b(A)

γ2q2
3

.

We ordered Q̃ in decreasing exponents, and we can clearly see that the first two coefficients are non-

negative. Since the polynom has only four coefficients, there can be at most two switches of signs between

consecutive coefficients (between the second and third, and between the third and fourth). Descartes’ rule of

signs then assures us that there will be at most 2 positive roots of Q̃.

Let us now show that we can find at least 2 roots of Q̃ in [1−γq3;1] under the condition S(A, a) > 0. This

would assure us that there are exactly 2 positive roots of Q̃, and that they are both in [1−γq3;1].

First of all, let us note that

Q̃(1) = 0

Then, we can calculate than

Q̃(1−γq3) = d(A)+ c(a, A)x̄(a)+ψ(A)v̄(a)(1−γq3)β > 0

And at last, we have

Q̃ ′(1) = S(A, a)+ψ(A)v̄(a)βγq3 = S(A, a)

which is positive by hypothesis.

We can then conclude easily that there is a root of Q̃ in (1−γq3;1). Since 1 is also a root, we have found at

least 2 roots of Q̃ in [1−γq3;1], meaning we have exactly 2 positive roots, both in [1−γq3;1].

From there, we can switch back to Q in order to conclude that there are exactly 2 roots in [0;1] when

ST (A, a) > 0, one of which is 0 and the other one pT (A, a).

We can then define pT (A, a) as the non trivial root of the following equation:

b(A)×pT (A, a)2 −S(A, a)×pT (A, a)+ψ(A)v̄(a)

(
1− γη(a, A)

(1−γ)β
×pT (A, a)

)β
−ψ(A)v̄(a) = 0. (6.27)

Comparing pT and p

Let us now compare this root to p(A, a), defined in (6.26).

If S(A, a) ≤ 0, p(A, a) = 0 and then pT (A, a) ≥ p(A, a).

If S(A, a) > 0, then p(A, a) = S(A,a)
b(A) . When evaluating Q at p(A, a), we find:

Q(p(A, a)) =ψ(A)v̄(a)(1−γq3 ×p(A, a))β−ψ(A)v̄(a) < 0

Since Q ′(0) < 0, we conclude that pT (A, a) > p(A, a).

In conclusion, we have shown that transduction always increases the probability of invasion of a mutant.
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A useful approximation

It is interesting to consider that β ≫ 1, which would lead to this interpretation of the defining equation of

pT (A, a):

b(A)×pT (A, a)2 −S(A, a)×pT (A, a)+ψ(A)v̄(a) exp

(
− γ

1−γη(a, A)pT (A, a)

)
−ψ(A)v̄(a) = 0.

Then, if we consider that γη(a, A)pT (A, a) ≪ 1 (which is reasonable for values as high as a tenth of a unit

for two or three of the three factors), we have yet another approximation:

b(A)×pT (A, a)2 −
(
S(A, a)+ γ

1−γη(a, A)ψ(A)v̄(a)

)
︸ ︷︷ ︸

=ST (A,a)

×p(A, a) = 0.

Which leads us to this explicit definition of the approximation p̃T (A, a):

p̃T (A, a) = [ST (A, a)]+
b(A)

. (6.28)

It is noteworthy to see that we find a somewhat classical form to the invasion probability, being the invasion

fitness divided by the mutant birth rate, as can be found in Billiard et al. [27] for example.
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C Convergence towards the stochastic canonical equation

Let us call D the trait domain for which bacteria-phage coexistence is possible and stable. We define N (du,dA,ds)

the Poisson point measure on R+×D ×R+ with intensity measure du dA ds. The trait substitution sequence

can then be expressed in the following way:

at = a0 +
∫ t

0

∫
D

∫
R+

(A−as− )1u≤x̄(as− )b(as− )pT (A,as− )m(as− ,dA)N (du,d A,d s)

To derive the canonical equation, we assume that the mutations step are very small, of order ϵ, i.e.:

∀A ∈D, |A−a| > ϵ =⇒ m(A−a) = 0.

By defining N (du,dh,ds) the Poisson point measure on R+× [−1;1]×R+ with intensity measure du dh ds, we

can express the TSS the following way:

aϵt = aϵ0 +
∫ t

0

∫ 1

−1

∫
R+

hϵ ·1u≤x̄(aϵs− )b(aϵs− )pT (aϵs−+hϵ,aϵs− )m(aϵs− ,dh)N (du,dh,d s)

This process is a semi-martingale [178] which can be re-written as

aϵt = aϵ0 +ϵ
∫ t

0

∫ 1

−1
hx̄(aϵs )b(aϵs )m(aϵs ,h)pT (aϵs +ϵh, aϵs )dhd s +Mϵ

t

where

< Mϵ >t= ϵ2
∫ t

0

∫ 1

−1
h2x̄(as )b(as )m(aϵs ,h)pT (aϵs +ϵh, aϵs )dhd s.

Symmetrical mutation kernel m

When decomposing p to the first order, we find:

aϵt = aϵ0 +ϵ
∫ t

0

∫ 1

−1
hx̄(aϵs )b(aϵs )m(h)

(
pT (aϵs , aϵs )+ϵh∂1pT (aϵs , aϵs )+o(ϵ)

)
dhd s +Mϵ

t

= aϵ0 +ϵ
∫ t

0
x̄(aϵs )b(aϵs )pT (aϵs , aϵs )

∫ 1

−1
hm(aϵs ,h)dh︸ ︷︷ ︸

=0 since m is symmetrical

d s

+ϵ2
∫ t

0
x̄(aϵs )b(aϵs )∂1pT (aϵs , aϵs )

∫ 1

−1
h2m(aϵs ,h)dhd s +o(ϵ2)+Mϵ

t

= aϵ0 +ϵ2
∫ t

0
x̄(aϵs )b(aϵs )∂1pT (aϵs , aϵs )σ2

0(aϵs )d s +o(ϵ2)+Mϵ
t

with, for the martingale part:

< Mϵ >t= ϵ2
∫ t

0

∫ 1

−1
h2x̄(as )b(as )m(aϵs ,h)pT (aϵs , aϵs )dhd s +o(ϵ2).

This leads to rescale time according to

ξϵt = aϵt/ϵ2 , (6.29)

leading to

ξϵt = ξϵ0 +
∫ t

0
x̄(ξϵs′ )b(ξϵs′ )∂1pT (ξϵs′ ,ξ

ϵ
s′ )σ

2
0(ξϵs )d s′+ M̃ϵ

t +o(1)
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with

< M̃ϵ >t=
∫ t

0
x̄(ξϵs′ )b(ξϵs′ )pT (ξϵs′ ,ξ

ϵ
s′ )σ

2
0(ξϵs )d s′+o(1). (6.30)

When ϵ→ 0, we have < M̃ϵ >→ ∫ t
0 σ

2
0(ξs ) b(ξs ) x̄(ξs )pT (ξs ,ξs )d s which is non-zero, from where the stochastic

part of the canonical equation comes from. As we stated before, this particularity stems from the fact that

∀a ∈D, pT (a, a) > 0.

Other than this one particularity, we find ourselves in the case studied in [44]. We shall then refer to this

paper for the final part of the convergence proof. We do find the following expression for the canonical equa-

tion:

d at = u(at ) ∂1pT (at , at ) d t +√
u(at ) pT (at , at ) dWt

where u(at ) =σ2
0(at ) b(at ) x̄(at ) and Wt is a Brownian motion.

Asymmetrical mutation kernel

For this particular case, we define:

m0(a) :=
∫ 1

−1
hm(a,h)dh

which is nonzero by hypothesis. When going through the same steps as before, we find

aϵt = aϵ0 +ϵ
∫ t

0
x̄(aϵs )b(aϵs )pT (aϵs , aϵs )m0(aϵs )d s +o(ϵ)+Mϵ

t

with

< Mϵ >t= ϵ2
∫ t

0

∫ 1

−1
h2x̄(as )b(as )m(aϵs ,h)pT (aϵs , aϵs )dhd s +o(ϵ2).

We now see that the appropriate rescaling is

ξ̃ϵt = aϵt/ϵ. (6.31)

Contrary to the prior rescaling, this one smoothes out the stochastic part, which is of order ϵ2. The limit then is

the solution to the following ordinary equation

ξ̃t = ξ̃0 +
∫ t

0
x̄(ξ̃s )b(ξ̃s )pT (ξ̃s , ξ̃s )m0(ξ̃s )d s. (6.32)

In this case, the long-term adaptation dynamics are driven deterministically by selection.
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‘- Jon, wait, before you leave... I did the right thing,

didn’t I? It all worked out in the end.

‘- "In the end"? Nothing ends, Adrian. Nothing ever

ends.’

Ozymandias & Dr. Manhattan, Watchmen (1986)

The goal of this thesis was to assess and quantify the potential role of heterotrophic bac-

terial adaptation in the response of the microbial loop to climate change. To the best of our

knowledge, such an eco-evolutionary study of heterotrophs had not been conducted before

for ocean ecosystems (and only recently had it been for terrestrial soil ecosystems). This

research thus extends a body of theory and modeling previously focused on phototrophs

(phytoplankton) and their capacity for rapid adaptation and importance in carbon seques-

tration.

In Chapter 1 we summarized the importance of the ocean in regulating global climate

and highlighted the role of microorganisms in capturing carbon from the atmosphere. Par-

ticular attention was given to the microbial loop and its capacity to recycle dissolved organic

matter into nutrients. We presented the threats climate change poses to oceanic ecosystems

and their potential feedback to the carbon cycle, and current modeling efforts to predict cli-

mate through Earth system models (ESMs). The current generation of ESMs do not include

microorganism adaptation through natural selection, which might have a significant impact

on the response of the biological pump to climate change. Finally, we presented the evolu-

tionary framework and global scope of the thesis, which is to develop an eco-evolutionary

modeling framework for the microbial loop and resolve its potential responses to climate

change.

Chapter 2 was devoted to the development of the microbial loop module used for most of

the eco-evolutionary study. We used a trait-based, ecosystem model that includes one bac-

terial biomass compartment and one dissolved organic matter compartment. This module

was designed for integration in a larger class of ecosystem models. Bacterial growth is as-

sumed to vary across bacterial strains, constrained by a trade-off with resource acquisition

and stress tolerance. Under some assumptions on ecological stability, we were able to calcu-
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late the evolutionary stable strategy of bacterial populations. We finally integrated the mod-

ule in a simple model of the microbial loop in the aphotic zone: the system is limited by DOM

input, and the total remineralization power of the microbial loop is greater than the sum of

the individual contributions. Ocean warming decreases DOM concentration at steady-state,

selecting bacterial strains that invest more in resource acquisition, which decreases bacterial

biomass but increases total remineralization. Ocean stratification decreases total reminer-

alization and increases DOM turnover time, without inducing an adaptive response from

bacterial populations.

We coupled the microbial loop model to a sea-surface ecosystem model in Chapter 3 to

predict the response of primary production to ocean warming. We found that the ecophys-

iological response of primary production to warming is driven by a decrease in regenerated

production which depends on nutrient availability. In nutrient-poor environments, the loss

of regenerated production to warming is due to decreasing microbial loop activity. How-

ever, this ecophysiological response can be opposed or even reversed by bacterial adapta-

tion through selection, especially in cold environments: heterotrophic bacteria with lower

bacterial growth efficiency are selected, which strengthens the ‘link’ behavior of the micro-

bial loop, increasing both new and regenerated production. In cold and rich environments

such as the Arctic Ocean, the effect of bacterial adaptation on primary production exceeds

the ecophysiological response.

To generate quantitative predictions of the influence of bacterial adaptation on the oceanic

carbon cycle, we developed a novel method for integrating eco-evolutionary processes with

Earth system models in Chapter 4. To circumvent the computational cost of simulating the

mechanistic process of evolution and the resulting trait diversity, we relied on a phenomeno-

logical description of trait adaptation at the community level. Applying this framework to

the study of bacterial growth efficiency adaptation yielded a trait distribution close to the

predictions made from the sea-surface ecosystem model. When sea-surface temperatures

are increased, we find that bacterial adaptation can add significant uncertainty to primary

production forecasts: in our simulation, the increase in primary production was 2.8% higher

due to eco-evolutionary processes. These results call for the integration of the framework in

forecast scenarios, and the application to phytoplankton adaptation.

In Chapter 5 and Chapter 6 we pave the way to integrate bacterial virues, or bacterio-

phages, in eco-evolutionary models of the microbial loop. In Chapter 5, we address the eco-

logical and biogeochemical influence of bacteriophages on bacterial adaptation and the mi-

crobial loop. By switching the system from a ‘bottom-up’ to a ‘top-down’ limitation, phages

decrease bacterial biomass and increase DOM concentration. In DOM-poor environments,

the increase in steady-state DOM concentrations favors the resource-acquisition strategy in

bacteria, driving BGE down. Depending on which function is metabolically more expen-

sive between yield and stress tolerance, lysis can either drive yield investment up (i.e. a BGE

increase) or stress tolerance investment up (i.e. a BGE decrease). Overall, the effects of bac-

144



Concluding remarks

teriophages in a constant environment increase DOM remineralization. Ocean stratification

decreases both remineralization ratio and total remineralization of DOM, and could poten-

tially drive specialized phage populations to low abundance and even extinction.

In Chapter 6, we address the genetic effect of transduction, the main mechanism of hor-

izontal transfer of genetic material between bacteria, on bacterial adaptation. We devel-

oped an individual-based model of transduction to resolve the effect of bacteriophages on

bacterial adaptation speed. Under directional selection (away from the optimum), the ef-

fect of transferring beneficial alleles dominate and transduction tends to accelerate adap-

tation. When stabilizing selection is expected (near the optimum), transduction generates

large stochastic fluctuations in the population’s adaptive trajectory, thus hindering adap-

tation. Under disruptive selection, transduction may either limit (as sexual recombination

would) or promote phenotypic diversification. Similarly to genetic drift in finite popula-

tions, transduction confers a positive probability of fixation to any allele (positively or neg-

atively selected) even though the bacterial population is very large. Transduction, like other

HGT mechanisms, is expected to facilitate adaptation in response to environmental change,

when the population stands far enough from its evolutionary optimum, despite the negative

demographic effect of viral infection.

Overall, this thesis proved the importance of the recycling pathway in ocean productivity

by giving a first assessment of the potential eco-evolutionary feedback loop mediated by

the microbial loop. Because of increased temperatures and intensified stratification, climate

change leads to more oligotrophic oceans, selecting heterotrophic bacteria that invest more

in resource gathering mechanisms. This leads to increased respiration, fueling the recycling

pathway: in the surface ocean, this causes an increase in regenerated production; deeper

in the water column, increased remineralization could mitigate the effect of stratification by

increasing the upward flux of nitrate. Bacteriophages tend to reinforce the recycling power

of the microbial loop and its response to climate change. By increasing remineralization and

fueling new and regenerated production, the microbial loop feeds back negatively to climate

change. But at the same time, increasing the concentration of dissolved inorganic carbon in

the ocean could intensify acidification, simultaneously generating a positive feedback.

Quantifying the relative strengths of the positive and negative feedbacks calls for fur-

ther studies to integrate them in Earth system models. The ‘selection gradient equations’

framework developed in this thesis could provide a basis for such studies. Phytoplankton

adaptation could also be studied within this framework, and eventually one could aim for an

integration taking adaptation into account across microbial primary producers and decom-

posers. Bacteriophage adaptation was not discussed in this thesis despite the importance of

coevolution mechanisms for bacterial community structure, but this topic offers a promis-

ing direction for future work. Potential phage extinction discussed here could be averted by

evolutionary rescue, and the consequences for the viral shunt and microbial loop function

should be further explored.
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Concluding remarks

Humans may have become the strongest evolutionary force on the planet. How micro-

bial communities evolve and adapt in response to anthropogenic climate change is a major

frontier of global ecology and evolutionary biology. Our work provides a theoretical basis to

assess and predict the significance of these responses and their impact on the Earth’s carbon

cycle. This research calls for extending the theory, validating the models, and continuing

their integration in global climate-ecosystem forecasting frameworks.
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Appendix A

Acronyms

BGE Bacterial growth efficiency

BP Bacterial production

BR Bacterial respiration

DIC Dissolved inorganic carbon

DIN Dissolved inorganic nitrogen

DOC Dissolved organic carbon

DOM Dissolved organic matter

DON Dissolved organic nitrogen

ESM Earth system model

ESS Evolutionary stable strategy

GCM Global circulation model

GTP Gene transducing particle

HGT Horizontal gene transfer

IBM Individual-based model

LDOC Labile dissolved organic carbon

MLE Microbial loop efficiency

NP New production

NPP Net primary production

POM Particulate organic matter

PP Primary production

RCP Representative Concentration Pathways

RP Regenerated production

TSS Trait substitution sequence
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Résumé long

L’objectif de cette thèse est d’évaluer et de quantifier le rôle potentiel de l’adaptation des bac-

téries hétérotrophes dans la réponse de la boucle microbienne au changement climatique.

A notre connaissance, une telle étude éco-évolutive des bactéries n’avait pas été menée

auparavant dans l’océan, contrairement aux écosystèmes terrestres tels que les sols. En

océanographie, l’accent est généralement mis sur le phytoplancton en raison de leur ca-

pacité d’adaptation aussi rapide que les bactéries hétérotrophes et de leur importance dans

la séquestration du carbone.

Nous détaillons l’importance de l’océan dans la régulation du climat mondial dans le

Chapitre 1 et soulignons le rôle des microorganismes dans la capture du carbone atmo-

sphérique. Un intérêt particulier est porté à la boucle microbienne et à leur capacité à re-

cycler la matière organique dissoute (DOM) en nutriments. Nous présentons les menaces

que le changement climatique fait peser sur les écosystèmes océaniques et leur rétroaction

potentielle sur le cycle du carbone, ainsi que les efforts actuels de modélisation pour prédire

le climat au moyen de modèles du système terrestre. La génération actuelle de modèles

n’inclut pas l’adaptation des micro-organismes par la sélection naturelle qui pourrait pour-

tant avoir un impact important sur la réponse de la pompe biologique au changement cli-

matique. Nous présentons enfin le cadre évolutif et la portée globale de la thèse, qui est de

développer un modèle éco-évolutif de la boucle microbienne et de résoudre sa réponse au

changement climatique.

Le Chapitre 2 est consacré au développement du module de la boucle microbienne util-

isé pour la majeure partie de l’étude éco-évolutive. Nous utilisons un modèle à comparti-

ments basé sur les traits fonctionnels, composé d’un réservoir de biomasse bactérienne et

d’un réservoir de matière organique dissoute. Ce module est conçu pour être intégré dans

une classe plus large de modèles. L’efficacité de croissance bactérienne (BGE) est soumise

à la sélection naturelle, limitée par un compromis entre l’acquisition de ressources et la

tolérance au stress. Si un équilibre écologique stable est possible dans le modèle plus large,
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il est possible de déterminer localement une stratégie évolutive stable des populations bac-

tériennes. Nous intégrons enfin le module dans un modèle simple de la boucle microbienne

dans la zone aphotique : le système est limité par l’apport de DOM, et le pouvoir de rem-

inéralisation total de la boucle microbienne est supérieur à la somme des contributions indi-

viduelles. Le réchauffement de l’océan diminue la concentration de DOM à l’état d’équilibre,

forçant les bactéries à investir davantage dans l’acquisition de ressources, ce qui diminue la

biomasse bactérienne mais augmente la reminéralisation totale. La stratification de l’océan

diminue la reminéralisation totale et augmente le temps de renouvellement de la DOM, sans

induire une réponse adaptative des populations bactériennes.

Nous couplons le modèle de boucle microbienne à un modèle d’écosystème de sur-

face de la mer dans le Chapitre 3 pour prédire la réponse de la production primaire au

réchauffement de l’océan. Nous trouvons que la réponse écophysiologique de la produc-

tion primaire au réchauffement est conduite par une diminution de la production régénérée

qui dépend de la disponibilité des nutriments. Dans les environnements pauvres en nutri-

ments, la perte de la production régénérée est due à la diminution de l’activité de la boucle

microbienne. Cependant, cette réponse écophysiologique peut être opposée voire inver-

sée par l’adaptation bactérienne, en particulier dans les environnements froids : les bac-

téries hétérotrophes ayant une efficacité de croissance plus faible sont sélectionnées, ce qui

renforce le comportement de "liaison" de la boucle microbienne, augmentant à la fois la

production nouvelle et la production régénérée. Dans les environnements froids et riches

comme l’océan Arctique, l’effet de l’adaptation bactérienne sur la production primaire dé-

passe la réponse écophysiologique.

Afin de générer des prédictions quantitatives de l’influence de l’adaptation bactérienne

sur le cycle du carbone océanique, nous developpons une nouvelle méthode d’intégration

des processus éco-évolutifs aux modèles du système terrestre dans le Chapitre 4. Pour con-

tourner le coût de calcul d’une simulation complète de l’évolution, nous nous appuyons sur

une description phénoménologique de l’adaptation des traits au niveau de la communauté.

L’application de ce cadre à l’étude de l’adaptation de l’efficacité de la croissance bactérienne

permet d’obtenir une distribution de la BGE proche des prédictions du modèle d’écosystème

de la surface océanique. Sous une augmentation de la température océanique, nous consta-

tons que l’adaptation bactérienne peut ajouter une incertitude significative aux prévisions

de la production primaire : dans notre simulation, l’augmentation de la production primaire

était 2,8% plus élevée en raison de processus éco-évolutifs.

Les bactériophages sont introduits dans le Chapitre 5 pour étudier lequel leur influence

écologique et biogéochimique sur l’adaptation bactérienne et la boucle microbienne. En

faisant passer le système d’une limitation de type "bottom-up" à une limitation de type

"top-down", les virus diminuent la biomasse bactérienne et augmentent la concentration

de DOM. Dans les environnements pauvres en DOM, l’augmentation des concentrations de

DOM à l’état d’équilibre favorise la stratégie d’acquisition de ressources des bactéries, entraî-

172



Résumé long

nant une baisse des valeurs de BGE. Selon le coût relatif du rendement de croissance par rap-

port à la tolérance au stress, la lyse peut soit augmenter l’investissement dans le rendement

(c’est-à-dire une augmentation du BGE), soit augmenter l’investissement dans la tolérance

au stress (c’est-à-dire une diminution du BGE). Globalement, les effets des bactériophages

dans un environnement constant augmentent la reminéralisation du DOM. La stratifica-

tion de l’océan diminue à la fois le ratio de reminéralisation et la reminéralisation totale

de la DOM, et pourrait potentiellement conduire les populations spécialisées de phages à

l’extinction.

Dans le Chapitre 6, nous développons un modèle individu-centré de la transduction, un

mécanisme de transfert horizontal de gènes médié par les bactériophages, pour résoudre

l’effet des bactériophages sur la vitesse d’adaptation des bactéries. En cas de sélection direc-

tionnelle (éloignée de l’optimum), l’effet du transfert d’allèles bénéfiques domine et la trans-

duction tend à accélérer l’adaptation. Lorsque l’on s’attend à une sélection stabilisante (près

de l’optimum), la transduction aplatit le "fitness landscape" et génère une grande quantité

de stochasticité dans la trajectoire adaptative de la population, ce qui entrave l’adaptation.

En cas de sélection perturbatrice, la transduction peut soit limiter (comme le ferait la recom-

binaison sexuelle), soit promouvoir la diversification phénotypique. Comme la dérive géné-

tique dans les populations finies, la transduction confère une probabilité positive de fixation

à tout allèle (sélectionné positivement ou négativement) même si la population bactérienne

est très grande. Comme d’autres modèles de transfert horizontal de gènes, la transduc-

tion devrait faciliter l’adaptation en réponse aux changements environnementaux, lorsque

la population est suffisamment éloignée de son optimum évolutif, malgré l’effet écologique

négatif de l’infection virale.

Dans l’ensemble, cette thèse prouve l’importance de la voie de recyclage des nutriments

dans la productivité des océans en donnant une première évaluation de la boucle de rétroac-

tion éco-évolutive induite par la boucle microbienne. En raison de l’augmentation des tem-

pératures et de l’intensification de la stratification, le changement climatique conduit à des

océans plus oligotrophes, poussant les bactéries hétérotrophes à investir davantage dans les

mécanismes de collecte des ressources. Cela entraîne une augmentation de la respiration,

alimentant la voie du recyclage : dans l’océan de surface, cela conduit à une augmentation

de la production régénérée ; plus profondément dans la colonne d’eau, une reminéralisa-

tion accrue pourrait atténuer l’effet de la stratification en augmentant le flux ascendant de

nitrate. Les bactériophages tendent à renforcer le pouvoir de recyclage de la boucle microbi-

enne et sa réponse au changement climatique. En augmentant la reminéralisation et en ali-

mentant une production nouvelle et régénérée, la boucle microbienne génère une boucle de

rétroaction négative au changement climatique. Mais en même temps, l’augmentation de la

concentration de carbone inorganique dissous dans l’océan pourrait intensifier l’acidification,

fournissant une boucle de rétroaction positive à cette partie du système.

173


	Acknowledgements
	Abstract / Résumé
	Table of contents
	The ocean, climate change and microbes
	Ocean ecosystems and the flow of carbon
	The global ocean, a major carbon trap
	Microorganisms and biogeochemical cycles

	Climate change and the carbon pump
	Climate change and ocean feedback
	Earth system models, a relevant tool for predictions
	The underestimated importance of adaptation by natural selection

	Thesis overview

	Modeling the microbial loop
	Design philosophy
	General considerations and aim
	An ecological representation of the microbial loop
	The evolutionary framework

	A mathematical description of the module
	Temporal dynamics of the population
	Integrating bacterial adaptation
	Deriving the evolutionary equilibrium

	Microbial loop adaptation in the aphotic zone
	Initial state of the ecosystem
	Effect of ocean warming and stratification on the ecosystem
	Bacterial adaptation and its impact

	Conclusion and perspectives

	Predicting the response of primary production to climate change
	A sea-surface ecosystem model for ocean productivity
	Predicting the future of primary production
	Ecosystem model
	Initial state of the system

	Eco-evolutionary responses of the system and impact on productivity
	The direction of primary production variation is controlled by ecophysiological changes in the microbial loop
	Bacterial adaptation in the microbial loop drives primary production
	Warming causes different eco-evolutionary responses in different biogeographic regions

	Conclusion and perspectives
	Ecophysiological vs. eco-evolutionary predictions
	Bridging eco-evolutionary modeling and sequence data
	Model extensions and conclusion


	Natural selection in Earth system models
	Eco-evolutionary processes in ESMs, a current blindspot
	The importance of adaptation for climate forecasting
	State of the art

	A proposed alternative: the selection gradient equations
	Keeping the basic structure of current ESMs
	Defining the selection gradient
	Pros and cons of the method
	Theoretical evaluation in a chemostat model

	Bacterial growth efficiency in NEMO-PISCES
	Methods
	Results

	Conclusions

	Bacteriophages and the microbial loop
	Viruses, players at the heart of the microbial loop
	The biogeochemical importance of viral life cycles
	Integrating bacteriophages in the microbial loop module
	The NB-V model in the aphotic zone

	Bacteriophage influence in a constant environment
	Shifting the evolutionary stable strategy
	Phages increase DOM recycling

	Bacteriophage influence under ocean stratification
	Eco-evolutionary response of the system
	Can ocean stratification lead to phage extinction?

	Conclusion and perspectives

	Transduction, a viral mechanism influencing bacterial adaptation
	Introduction
	A mathematical model for transduction
	Individual-level model of infection and transduction
	Phage-bacteria population dynamics with mutation and transduction
	Mutant invasion, Trait Substitution Sequence, and canonical equation of adaptive dynamics
	Simulations

	Results
	Dynamics of bacterial adaptation without transduction
	Mutant invasion with transduction
	Rate of adaptation with transduction
	Effect of transduction on bacterial adaptive diversification

	Conclusions
	Deriving the invasion fitness with transduction
	Deriving the invasion probability with transduction
	Convergence towards the stochastic canonical equation

	Concluding remarks
	Bibliography
	Acronyms
	Résumé long

